欢迎来到天天文库
浏览记录
ID:48220568
大小:67.00 KB
页数:3页
时间:2020-01-23
《16.1 二次根式 (3).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、16.1二次根式第一课时教学内容二次根式的概念及其运用教学目标知识与技能:1、理解二次根式的概念,并利用(a≥0)的意义解答具体题目.2、提出问题,根据问题给出概念,应用概念解决实际问题.过程与方法:经历观察、比较,总结二次根式概念和被开方数取值的过程,发展学生的归纳概括能力。情感态度与价值观:经历观察、比较和应用等数学活动,感受数学活动充满了探索性和创造性,体验发现的快乐,并提高应用的意识。教学重难点1.重点:形如(a≥0)的式子叫做二次根式的概念;2.难点:利用“(a≥0)”解决具体问题.教学方法:讲解——小组合作教学准备:多媒体课件教学过程一、复习引入(学生活动)请同学们独
2、立完成下列三个问题:问题1:已知反比例函数y=,那么它的图象在第一象限横、纵坐标相等的点的坐标是___________.问题2:如图,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________.问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________.老师点评:问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以x=,所以所求点的坐标(,).问题2:由勾股定理得AB=问题3:由方差的概念得S=.二、探索新知很明显、、,都是一些正数的算术平方根.像这样一些正数的算术平方
3、根的式子,我们就把它称二次根式.因此,一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号.(学生活动)议一议:1.-1有算术平方根吗?2.0的算术平方根是多少?3.当a<0,有意义吗?老师点评:(略)例1.下列式子,哪些是二次根式,哪些不是二次根式:、、、(x>0)、、、-、、(x≥0,y≥0).分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0.解:二次根式有:、(x>0)、、-、(x≥0,y≥0);不是二次根式的有:、、、.例2.当x是多少时,在实数范围内有意义?分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,
4、才能有意义.解:由3x-1≥0,得:x≥当x≥时,在实数范围内有意义.三、巩固练习教材P3练习1、2、3.四、应用拓展例3.当x是多少时,+在实数范围内有意义?分析:要使+在实数范围内有意义,必须同时满足中的≥0和中的x+1≠0.解:依题意,得由①得:x≥-由②得:x≠-1当x≥-且x≠-1时,+在实数范围内有意义.例4(1)已知y=++5,求的值.(答案:2)(2)若+=0,求a2004+b2004的值.(答案:)五、归纳小结(学生活动,老师点评)本节课要掌握:1.形如(a≥0)的式子叫做二次根式,“”称为二次根号.2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.
5、六、布置作业1.P5复习巩固1、综合应用5.2.课后作业:《同步训练》教学反思:
此文档下载收益归作者所有