二次根式16.1

二次根式16.1

ID:38454094

大小:175.92 KB

页数:4页

时间:2019-06-13

二次根式16.1_第1页
二次根式16.1_第2页
二次根式16.1_第3页
二次根式16.1_第4页
资源描述:

《二次根式16.1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、课题:16.1二次根式授课时间:教学目标:知识与技能目标:理解二次根式的概念,并利用(a≥0)的意义解答具体题目.过程与方法目标:提出问题,根据问题给出概念,应用概念解决实际问题.情感与价值目标:通过本节的学习培养学生:利用规定准确计算和化简的严谨的科学精神,发展学生观察、分析、发现问题的能力.教学重难点关键1.重点:形如(a≥0)的式子叫做二次根式的概念;2.难点与关键:利用“(a≥0)”解决具体问题.教法:1、引导发现法:通过教师精心设计的问题链,使学生产生认知冲突,感悟新知,建立分式的模型,引导学生观察、类比、参与问题讨论,使感性认识上升为理性认识,充分

2、体现了教师主导和学生主体的作用,对实现教学目标起了重要的作用;2、讲练结合法:在例题教学中,引导学生阅读,与平方根进行类比,获得解决问题的方法后配以精讲,并进行分层练习,培养学生的阅读习惯和规范的解题格式。学法:1、类比的方法通过观察、类比,使学生感悟二次根式的模型,形成有效的学习策略。2、阅读的方法让学生阅读教材及材料,体验一定的阅读方法,提高阅读能力。3、分组讨论法将自己的意见在小组内交换,达到取长补短,体验学习活动中的交流与合作。4、练习法采用不同的练习法,巩固所学的知识;利用教材进行自检,小组内进行他检,提高学生的素质。媒体设计:PPT课件,展台。课时

3、安排:1课时。教学过程一、复习引入(学生活动)请同学们独立完成下列三个问题:问题1:已知反比例函数y=,那么它的图象在第一象限横、纵坐标相等的点的坐标是___________.问题2:如图,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________.老师点评:问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以x=,所以所求点的坐标(,).问题2:由勾股定理得AB=二、探索新知很明显、,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如(a≥0)的式子叫

4、做二次根式,“”称为二次根号.议一议:1.-1有算术平方根吗?2.0的算术平方根是多少?3.当a<0,有意义吗?例1.下列式子,哪些是二次根式,哪些不是二次根式:、、、(x>0)、、、-、、(x≥0,y≥0).分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0.解:二次根式有:、(x>0)、、-、(x≥0,y≥0);不是二次根式的有:、、、.例2.当x是多少时,在实数范围内有意义?分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,才能有意义.解:由3x-1≥0,得:x≥当x≥时,在实数范围内有意义.三、应用拓展

5、例3.当x是多少时,+在实数范围内有意义?分析:要使+在实数范围内有意义,必须同时满足中的≥0和中的x+1≠0.解:依题意,得由①得:x≥-由②得:x≠-1当x≥-且x≠-1时,+在实数范围内有意义.例4(1)已知y=++5,求的值.(答案:2)(2)若+=0,求a2004+b2004的值.(答案:)四、布置作业五、课后小结与反思:本节课要掌握:1.形如(a≥0)的式子叫做二次根式,“”称为二次根号.2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.板书设计:§16.1.1.二次根式(1)情境引入例2学生板演二次根式的定义例3例1例4小结

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。