资源描述:
《第6讲 第二章.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、概率论是从数量上来研究随机现象内在规律性的,为了更方便有力的研究随机现象,就要用数学分析的方法来研究,因此为了便于数学上的推导和计算,就需将任意的随机事件数量化.当把一些非数量表示的随机事件用数字来表示时,就建立起了随机变量的概念.1.为什么引入随机变量?一、随机变量的引入2.随机变量的引入的可行性实例1在一装有红球、白球的袋中任摸一个球,观察摸出球的颜色.S={红色、白色}非数量将S数量化可采用下列方法红色白色即有X(红色)=1,X(白色)=0.这样便将非数量的S={红色,白色}数量化了.实例2抛掷骰子,观察出现的点数.S={1,2,3,4,5,6}样本点本身就是数量恒等变换
2、且有则有二、随机变量的概念1.定义随机变量随着试验的结果不同而取不同的值,由于试验的各个结果的出现具有一定的概率,因此随机变量的取值也有一定的概率规律.(2)随机变量的取值具有一定的概率规律随机变量是一个函数,但它与普通的函数有着本质的差别,普通函数是定义在实数轴上的,而随机变量是定义在样本空间上的(样本空间的元素不一定是实数).2.说明(1)随机变量与普通的函数不同随机事件包容在随机变量这个范围更广的概念之内.或者说:随机事件是从静态的观点来研究随机现象,而随机变量则是从动态的观点来研究随机现象.(3)随机变量与随机事件的关系实例3在有两个孩子的家庭中,考虑其性别,共有4个样
3、本点:若用X表示该家女孩子的个数时,则有可得随机变量X(e),实例4设某射手每次射击打中目标的概率是0.8,现该射手不断向目标射击,直到击中目标为止,则是一个随机变量.且X(e)的所有可能取值为:实例5某公共汽车站每隔5分钟有一辆汽车通过,如果某人到达该车站的时刻是随机的,则是一个随机变量.且X(e)的所有可能取值为:3.随机变量的分类离散型(1)离散型随机变量所取的可能值是有限多个或无限可列个,叫做离散型随机变量.随机变量连续型非离散型其它(2)连续型随机变量所取的可能值可以连续地充满某个区间,叫做连续型随机变量.说明三、离散型随机变量的分布律定义离散型随机变量的分布律也可表
4、示为解则有例1四、常见离散型随机变量的概率分布设随机变量X只可能取0与1两个值,它的分布律为则称X服从(0—1)分布或两点分布.1.两点分布(Two-pointdistribution)实例1“抛硬币”试验,观察正、反两面情况.随机变量X服从(0—1)分布.其分布律为实例2200件产品中,有190件合格品,10件不合格品,现从中随机抽取一件,那末,若规定取得不合格品,取得合格品.则随机变量X服从(0—1)分布.两点分布是最简单的一种分布,任何一个只有两种可能结果的随机现象,比如新生婴儿是男还是女、明天是否下雨、种籽是否发芽等,都属于两点分布.说明(1)n重伯努利试验伯努利资料2
5、.二项分布(BinomialDistribution)JacobBernoulliBorn:27Dec1654inBasel,SwitzerlandDied:16Aug1705inBasel,Switzerland伯努利资料实例1抛一枚硬币观察得到正面或反面.若将硬币抛n次,就是n重伯努利试验.实例2抛一颗骰子n次,观察是否“出现1点”,就是n重伯努利试验.(2)二项概率公式且两两互不相容.称这样的分布为二项分布.记为二项分布两点分布二项分布的图形解因此例1有一繁忙的汽车站,每天有大量汽车通过,设每辆汽车在一天的某段时间内,出事故的概率为0.0001,在每天的该段时间内有100
6、0辆汽车通过,问出事故的次数不小于2的概率是多少?设1000辆车通过,出事故的次数为X,则解例2故所求概率为3.泊松分布(Poissondistribution)泊松资料泊松资料Born:21June1781inPithiviers,FranceDied:25April1840inSceaux(nearParis),FranceSiméonPoisson泊松分布的背景及应用二十世纪初卢瑟福和盖克两位科学家在观察与分析放射性物质放出的粒子个数的情况时,他们做了2608次观察(每次时间为7.5秒)发现放射性物质在规定的一段时间内,其放射的粒子数X服从泊松分布.在生物学、医学、工业统
7、计、保险科学及公用事业的排队等问题中,泊松分布是常见的.例如地震、火山爆发、特大洪水、交换台的电话呼唤次数等,都服从泊松分布.电话呼唤次数交通事故次数商场接待的顾客数地震火山爆发特大洪水泊松分布的图形例2一家商店采用科学管理,由该商店过去的销售记录知道,某种商品每月的销售数可以用参数λ=5的泊松分布来描述,为了以95%以上的把握保证不脱销,问商店在月底至少应进某种商品多少件?解:设该商品每月的销售数为X,已知X服从参数λ=5的泊松分布.设商店在月底应进某种商品m件,求满足P{X≤m}>0.9