资源描述:
《八上52平面直角坐标系(3).ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、平面直角坐标系(3)做一做:画一个直角坐标系,在所画的坐标系中找出下列各点并将各点用线段依次连接起来,观察A点与其他各点有什么特殊的位置关系?A(-1,2),B(1,2),C(-1,-2)D(1,-2)想一想:在一次“寻宝”游戏中,寻宝人已经找到了坐标为(3,2)和(3,-2)的两个标志点,并且知道藏宝地点的坐标为(4,4),除此外不知道其他信息。如何确定直角坐标系找到宝藏?例1:如图,矩形ABCD的长宽分别是6,4,建立适当的坐标系,并写出各个顶点的坐标.BCDA解:如图,以点C为坐标原点,分别以CD,CB所在的直线为x轴,y轴建立直角坐标系.此时C点
2、坐标为(0,0).xy0(0,0)(0,4)(6,4)(6,0)由CD长为6,CB长为4,可得D,B,A的坐标分别为D(6,0),B(0,4),A(6,4).例2.如图正三角形ABC的边长为6,建立适当的直角坐标系,并写出各个顶点的坐标.ABC解:如图,以边AB所在的直线为x轴,以边AB的中垂线y轴建立直角坐标系.由正三角形的性质可知CO=,正三角形ABC各个顶点A,B,C的坐标分别为A(-3,0);B(3,0);C(0,).yx0(-3,0)(3,0)(0,)63议一议1.在上面的例题中,你还可以怎样建立直角坐标系?没有一成不变的模式,但选择适当的坐标
3、系,可使计算降低难度!2.你认为怎样建立适合的直角坐标系?方便,简单!考考你在一次“寻宝”游戏中,寻宝人已经找到了坐标为(3,2)和(3,-2)的两个标志点,并且知道藏宝地点的坐标为(4,4),除此外不知道其他信息,如何确定直角坐标系找的“宝藏”?你能找到吗?与同伴交流.提示:连接两个标志点,作所得线段的中垂线,并以这条线为横轴.那如何来确定纵轴?随堂练习:建立坐标系表示右面图形各顶点的坐标直角梯形上底3,下底5,底角xy0小结:通过今天的学习你有哪些收获呢?练习一:1、点(-1,2)在()A、第一象限;B、第二象限;C、第三象限;D、第四象限2、若点(
4、X,Y)在第四象限内,则()A、X,Y同是正数B、X,Y同是负数C、X是正数,Y是负数D、X是负数,Y是正数3、横坐标是正数,纵坐标的绝对值是正数的点在()A、第一、三象限B、第二、四象限C、第二、三象限D、第一、四象限4、若点P(a,b)在第二象限,则点Q(-a,b+1)在()A、第一象限;B、第二象限;C、第三象限;D、第四象限BCDAA(-3,-5),B(6,-7),C(0,-6),E(4,0)5、指出下列各点所在的象限或坐标轴6、点P(x,y)在第一象限,x是正数还是负数?y是正数还是负数?练习二1).点A在轴上,距离原点4个单位长度,则A点的坐
5、标是。2).点A(1-a,5),B(3,b)关于y轴对称,则a+b=______。3).在平面直角坐标系内,已知点P(a,b),且ab<0,则点P的位置在________。4).如图,△AOB是边长为5的等边三角形,则A,B两点的坐标分别是A,B_______.yxAOB再见