有理数总复习.ppt

有理数总复习.ppt

ID:48041529

大小:1.01 MB

页数:36页

时间:2020-01-13

有理数总复习.ppt_第1页
有理数总复习.ppt_第2页
有理数总复习.ppt_第3页
有理数总复习.ppt_第4页
有理数总复习.ppt_第5页
资源描述:

《有理数总复习.ppt》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、有理数总复习1.负数2.有理数3.数轴4.互为相反数5.互为倒数6.有理数的绝对值7.有理数大小的比较8.科学记数法、近似数与有效数字一、有理数的基本概念二、有理数的运算加、减、乘、除、乘方运算一、有理数的基本概念1.负数:在正数前面加“—”的数;0既不是正数,也不是负数。判断:1)a一定是正数;2)-a一定是负数;3)-(-a)一定大于0;4)0是正整数。××××2.有理数:整数和分数统称有理数。有理数整数分数正整数负整数正分数负分数有理数正有理数零负有理数正整数正分数负整数负分数自然数零3.数轴规定了原点、正方向和单位长度的直线.1)在数轴上表示的两个数,右边的数总比左边的数

2、大;2)正数都大于0,负数都小于0;正数大于一切负数;-3–2–1012343)所有有理数都可以用数轴上的点表示。选择题:1、在数轴上,原点及原点左边所表示的数是( )  A整数 B负数 C非负数 D非正数2、下列语句中正确的是( )           A数轴上的点只能表示整数 B数轴上的点只能表示分数 C数轴上的点只能表示有理数 D所有有理数都可以用数轴上的点表示出来DD4.相反数只有符号不同的两个数,其中一个是另一个的相反数。1)数a的相反数是-a2)0的相反数是0.-4-3–2–101234-22-443)若a、b互为相反数,则a+b=0.(a是任意一个有理数);5.倒数

3、乘积是1的两个数互为倒数.1)a的倒数是(a≠0);3)若a与b互为倒数,则ab=1.2)0没有倒数;例:下列各数,哪两个数互为倒数?8,,-1,+(-8),1,4)倒数是它本身的是______.6.绝对值一个数a的绝对值就是数轴上表示数a的点与原点的距离。1)数a的绝对值记作︱a︱;若a>0,则︱a︱=;2)若a<0,则︱a︱=;若a=0,则︱a︱=;-3–2–101234234a-a03)对任何有理数a,总有︱a︱≥0.判断:(1)

4、5

5、=

6、-5

7、(2)

8、-0.3

9、=

10、0.3

11、(3)

12、3

13、>0(4)

14、-1.4

15、>0(5)有理数的绝对值一定是正数(6)若a=b,则

16、a

17、=

18、b

19、

20、(7)若

21、a

22、=

23、b

24、,则a=b(8)若

25、a

26、=-a,则a必为负数(9)互为相反数的两个数的绝对值相等√√√√×√××√例5计算:(1)(2)例6:比较下列各对数的大小:(1)-0.1与-2;(2)练习若(x-1)2+

27、y+4

28、=0,则3x+5y=______若

29、a-3

30、+

31、3a-4b

32、=0,则-2a+8b=____已知

33、x

34、=3,

35、y

36、=2,且x

37、a<b.8.科学记数法、近似数与有效数字1.把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫做科学记数法.2.一个近似数,从左边第一个不是0的数字起到,到精确到的数位止,所有的数字,都叫做这个数的有效数字。例7下列由四舍五入得到的近似数,各精确到哪一位,各有几位有效数字?(1)43.8(2)0.03086(3)2.4万(4)6×104(5)6.0×104解:(1)43.8精确到十分位.有3个有效数字:4,3,8;(2)0.03086精确到十万分位,有四个有效数字:3,0,8,6;(3)2.4万精确到千位,有2个有效数字:2,4;(4)6×104精

38、确到万位,有1个有效数字:6;(5)6.0×104精确到千位,有2个有效数字:6,0;有理数的五种运算1.运算法则2.运算顺序3.运算律1.运算法则1)有理数加法法则2)有理数减法法则3)有理数乘法法则4)有理数除法法则5)有理数的乘方1)有理数加法法则①同号两数相加,取相同的符号,并把绝对值相加;②异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两数相加得0;③一个数同0相加,仍得这个数。有理数加法法则应用举例:①同号相加:②异号相加③与0相加若a、b互为相反数,则a+b=a是任一个有理数,则a+0=0a(-5)+(-3)(+5)+(+3)

39、=5+(-3)=-5+(+3)=8=-82-22)有理数减法法则减去一个数,等于加上这个数的相反数.即a-b=a+(-b)例:分别求出数轴上两点间的距离:①表示2的点与表示-7的点;②表示-3的点与表示-1的点。解:①2-(-7)=2+7=9(或︱-7-2︱=︱-9︱=9)②-1-(-3)=-1+3=2你都记住了吗?3)有理数的乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0.①几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。