2019-2020年中考数学压轴试题复习第二部分专题一由比例线段产生的函数关系问题

2019-2020年中考数学压轴试题复习第二部分专题一由比例线段产生的函数关系问题

ID:47963032

大小:454.50 KB

页数:11页

时间:2019-11-10

2019-2020年中考数学压轴试题复习第二部分专题一由比例线段产生的函数关系问题_第1页
2019-2020年中考数学压轴试题复习第二部分专题一由比例线段产生的函数关系问题_第2页
2019-2020年中考数学压轴试题复习第二部分专题一由比例线段产生的函数关系问题_第3页
2019-2020年中考数学压轴试题复习第二部分专题一由比例线段产生的函数关系问题_第4页
2019-2020年中考数学压轴试题复习第二部分专题一由比例线段产生的函数关系问题_第5页
资源描述:

《2019-2020年中考数学压轴试题复习第二部分专题一由比例线段产生的函数关系问题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2019-2020年中考数学压轴试题复习第二部分专题一由比例线段产生的函数关系问题课前导学(一)图形运动的过程中,求两条线段之间的函数关系,是中考数学的热点问题.产生两条线段间的函数关系,常见的情况有两种,一是勾股定理,二是比例关系.还有一种不常见的,就是线段全长等于部分线段之和.由勾股定理产生的函数关系,在两种类型的题目中比较常用.类型一,已知“边角边”,至少一边是动态的,求角的对边.如图1,已知点A的坐标为(3,4),点B是x轴正半轴上的一个动点,设OB=x,AB=y,那么我们在直角三角形ABH中用勾股定理,就

2、可以得到y关于x的函数关系式.类型二,图形的翻折.已知矩形OABC在坐标平面内如图2所示,AB=5,点O沿直线EF翻折后,点O的对应点D落在AB边上,设AD=x,OE=y,那么在直角三角形AED中用勾股定理就可以得到y关于x的函数关系式.图1图2由比例线段产生的函数关系问题,在两种类型的题目中比较常用.一是由平行线产生的对于线段成比例,二是相似三角形的对应边成比例.一般步骤是先说理产生比例关系,再代入数值或表示数的字母,最后整理、变形,根据要求写出定义域.关键是寻找比例关系,难点是有的整理、变形比较繁琐,容易出错.

3、课前导学(二)图形运动的过程中,求面积随某个量变化的函数关系,是中考数学的热点问题.计算面积常见的有四种方法,一是规则图形的面积用面积公式;二是不规则图形的面积通过割补进行计算;三是同高(或同底)三角形的面积比等于对应边(或高)的比;四是相似三角形的面积比等于相似比的平方.前两种方法容易想到,但是灵活使用第三种和第四种方法,可以使得运算简单.一般情况下,在求出面积S关于自变量x的函数关系后,会提出在什么情况下(x为何值时),S取得最大值或最小值.关于面积的最值问题,有许多经典的结论.例1,周长一定的矩形,当正方形时

4、,面积最大.例2,面积一定的矩形,当正方形时,周长最小.例3,周长一定的正多边形,当边数越大时,面积越大,极限值是圆.例4,如图1,锐角△ABC的内接矩形DEFG的面积为y,AD=x,当点D是AB的中点时,面积y最大.例5,如图2,点P在直线AB上方的抛物线上一点,当点P位于AB的中点E的正上方时,△PAB的面积最大.例6,如图3,△ABC中,∠A和对边BC是确定的,当AB=AC时,△ABC的面积最大.图1图2图3例1xx年湖南省常德市中考第26题如图1,图2,已知四边形ABCD为正方形,在射线AC上有一动点P,作

5、PE⊥AD(或延长线)于E,作PF⊥DC(或延长线)于F,作射线BP交EF于G.(1)在图1中,正方形ABCD的边长为2,四边形ABFE的面积为y,设AP=,求y关于的函数表达式;(2)GB⊥EF对于图1,图2都是成立的,请任选一图形给出证明;(3)请根据图2证明:△FGC∽△PFB.图1图2动感体验请打开几何画板文件名“14常德26”,拖动点P在射线AC上运动,可以体验到,EM和FN把正方形ABCD分割成了两个正方形和两个全等的矩形,B、C、G、F四点共圆.思路点拨1.四边形ABFE可以用大正方形减去两个直角三角

6、形得到.2.画直线EP、FP,把正方形分割为两个正方形和两个全等的矩形.图文解析(1)如图3,延长EP交BC于M,延长FP交AB于N,那么四边形AEPN和四边形CFPM是正方形.由AP=,可得正方形AEPN的边长为.所以FC=DE=.由于S△DEF==,S△BCF==,所以y=S四边形ABFE=S正方形ABCD-S△DEF-S△BCF=4--=.图3图4(2)如图4,因为tan∠EFP=,tan∠PBN=,且PE=NP,PF=NB,所以∠EFP=∠PBN.又因为∠1=∠2,∠1+∠PBN=90°,所以∠2+∠EFP

7、=90°.所以GB⊥EF.(3)如图5,由于GB⊥EF,∠BCF=90°,所以B、C、G、F四点共圆.所以∠FCG=∠PBF,∠CGB=∠CFB.又因为∠CGF=∠CGB+90°,∠BFP=∠CFB+90°,所以∠CGF=∠BFP.所以△FGC∽△PFB.图5图6图7考点伸展如图6,由于tan∠EFP=tan∠PBN,所以∠EFP=∠PBN.又因为∠PBN+∠1=90°,所以∠EFP+∠1=90°.因此这种情况下,依然有BG⊥EF.第(1)题还有更简便的割补办法:如图7,连结EN.由于S四边形NBFE=S△ENF+

8、S△BNF=,S△AEN=,所以y=S四边形ABFE=S四边形NBFE+S△AEN=.例2xx年湖南省湘潭市中考第25题如图1,△ABC为等边三角形,边长为a,点F在BC边上,DF⊥AB,EF⊥AC,垂足分别为D、E.(1)求证:△BDF∽△CEF;(2)若a=4,设BF=m,四边形ADFE面积为S,求出S与m之间的函数关系,并探究当m为何值时S取得最大值;

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。