基于复杂网络的证券投资行为扩散研究

基于复杂网络的证券投资行为扩散研究

ID:47930297

大小:37.00 KB

页数:4页

时间:2019-11-06

基于复杂网络的证券投资行为扩散研究_第1页
基于复杂网络的证券投资行为扩散研究_第2页
基于复杂网络的证券投资行为扩散研究_第3页
基于复杂网络的证券投资行为扩散研究_第4页
资源描述:

《基于复杂网络的证券投资行为扩散研究》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、企业研究论文-基于复杂网络的证券投资行为扩散研究  [摘要]证券市场是一个开放市场,影响股价的因素比较复杂,其中投资者群体心理因素起着重要作用,较之于其他经济领域,证券投资行为扩散往往容易产生投资者群体,并具有较高的集合力或凝聚力,有时甚至能够左右证券市场的走势,发挥着极强的扩展和放大效应。本文分别建立了基于随机网络、小世界网络和无标度网络的投资行为随机演化模型,讨论了投资者行为扩散的动力学性质。通过大量的试验,得到心理阈值、人群的网络结构、初始投资行为群体的规模和特点影响投资行为扩散的规律,并提出了开展行之有效的投资者教育、监管层应在实践中不断摸索、有效甄别证券投资行为扩散中的意见领袖,

2、充分发挥他们的作用等相关政策建议。  [关键词]复杂网络;投资行为扩散;心理阈值;随机演化模型;政策建议    一、基本思路    一般而言,行为扩散的传播渠道包括大众传播和人际传播,人们的许多行为都会受到其身边的朋友、同事、邻居或社会中其他与之邻接的人影响。对于证券投资行为而言,人际传播网络对投资行为扩散至关重要。因为在证券投资市场中,个体投资者高密度的接触促使其产生激烈的互动,同时受情感的控制,产生所谓的“隧道现象”,造成众多个体投资者的心理经互动后达到思想观念和感情一致的同化融合状态,并通过暗示、模仿、感染等途径加速投资行为的传播和扩散,直到形成特定的群体投资行为模式。这种彼此助长、

3、相互促进的从众行为,是投资者群体不断扩大的重要诱因。基于此,我们采用心理阈值衡量启动个体投资者从众行为的临界影响程度。所谓心理阈值,通俗地说就是心理承受的极限,心理阈值越高的人,心理承受能力越强,则其从众的倾向越低;而心理阈值越低的人,心理承受能力越弱,从众倾向越高。传统的模仿传染模型往往用一组确定性的微分方程描写传播扩散的动力学行为,由于受研究工具的限制,无法探究人际关系网络类型对投资行为扩散的影响。有鉴于此,本文采用复杂网络上的扩散模型建模方法,首先模拟出投资行为扩散的人际关系网络,为系统设定一些规则后让系统在该网络下自发演化,然后考察系统演化过程中表现出来的若干性质。由于考虑了扩散网

4、络拓扑结构本身对投资行为扩散的影响,因此可以得到很多传统模型不能得到的结果。    二、模型构建    对于投资行为扩散的人际关系网络的判断是研究行为扩散的前提。由于能够用来描述投资行为扩散的定性约束很少,需要根据常识和专家知识进行过滤,建立相关的约束规则。对于潜在投资者网络结构的判断可以:(1)借鉴过去的相关投资行为扩散研究中对投资者网络的观察结论;(2)将一个假想的投资行为介绍给潜在投资者,采用问卷调查的方式确定网络结构;(3)在某种投资行为扩散之前调查潜在投资者的网络结构。本文采用网络图的形式描述投资行为扩散的人际关系网络结构。我们用G(V,E)表示人际关系网络,其中V是顶点集,E是

5、边集,每个顶点代表系统中的一个人,两个人之间有一条边相连,表示这两个人有可能发生联系,从而可能使投资行为扩散,这里记为相邻个体。为了进一步研究的需要,我们采用邻接矩阵定义人群中的关系网络。如果第i节点与第j节点之间有边相连,对应的邻接矩阵中第i行第j列的元素和第j行第i列的元素都为1,否则为0,如图1所示。   系统完成对每个未投资行为的节点进行检测和转变过程称之为一个阶段。用t表示系统所处的阶段。投资行为对节点i的吸引力c(i,t)由t阶段时,邻接的节点中已投资行为的节点个数m(i,t)以及邻接节点的个数n(i)所决定:    模型有两个假设:  (1)每个阶段,投资者要决定是否跟风投资

6、。如果某种投资行为对一个潜在的投资者的吸引力c(i,t)大于其心理阈值,他将跟随投资;  (2)投资行为扩散过程中,人群中的人际关系保持不变。  按照上述假设规则进行演化迭代,演化过程如图2所示:    图2中,(a)为系统初始化,随机指定初始投资行为节点,(b)、(c)是相继的演化进程,即从系统现有投资者的节点出发,对每个未投资的节点检测,判断并完成未投资节点的转变过程。    三、基础网络    证券投资行为扩散动力机制极其多样化,决定了其基础网络有着不同的网络性质。本文主要以目前研究比较成熟的随机网络、无标度网络以及小世界网络为基础网络,在试验中将网络规模均设定为N=2000,分别研

7、究投资行为在这三种网络结构上的扩散情况。  1.随机网络。随机网络的连接是随机设置的,其大部分节点的连接数目会大致相同,即节点度的分布方式遵循钟形的泊松分布,有一个特征性的“平均数”,连接数目比平均数高许多或低许多的节点都极少,随着连接数的增大,其概率呈指数式迅速递减,故随机网络亦称指数网络。  在随机图理论中,连接概率被定义为系统大小的一个函数:P为系统中已有边数占总边数N(N-1)/2(其中N为系统中结点的数目)的比

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。