欢迎来到天天文库
浏览记录
ID:47920377
大小:146.50 KB
页数:9页
时间:2019-10-31
《2017_18版高中数学第一章计数原理2排列第2课时排列的应用学案北师大版选修》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第2课时 排列的应用学习目标 1.进一步加深对排列概念的理解.2.掌握几种有限制条件的排列,能应用排列数公式解决简单的实际问题.知识点 排列及其应用1.排列数公式A=n(n-1)(n-2)…(n-m+1)(n,m∈N+,m≤n)=.A=n(n-1)(n-2)…2·1=n!(叫做n的阶乘).另外,我们规定0!=1.2.应用排列与排列数公式求解实际问题中的计数问题的基本步骤类型一 无限制条件的排列问题例1 (1)有7本不同的书,从中选3本送给3名同学,每人各1本,共有多少种不同的送法?(2)有7种不同的书,要买3本送给3名同学,每人各1本,共有多少种
2、不同的送法? 反思与感悟 典型的排列问题,用排列数计算其排列方法数;若不是排列问题,需用分步乘法计数原理求其方法种数.排列的概念很清楚,要从“n个不同的元素中取出m9个元素”.即在排列问题中元素不能重复选取,而在用分步乘法计数原理解决的问题中,元素可以重复选取.跟踪训练1 某信号兵用红、黄、蓝3面旗从上到下挂在竖直的旗杆上表示信号,每次可以任挂1面、2面或3面,并且不同的顺序表示不同的信号,则一共可以表示多少种不同的信号? 类型二 排队问题命题角度1 元素“相邻”与“不相邻”问题例2 3名男生,4名女生,这7个人站成一排在下列情况下,各
3、有多少种不同的站法.(1)男、女各站在一起;(2)男生必须排在一起;(3)男生不能排在一起;(4)男生互不相邻,且女生也互不相邻. 反思与感悟 处理元素“相邻”“不相邻”问题应遵循“先整体,后局部”的原则.元素相邻问题,一般用“捆绑法”,先把相邻的若干个元素“捆绑”为一个大元素与其余元素全排列,然后再松绑,将这若干个元素内部全排列.元素不相邻问题,一般用“插空法”,先将不相邻元素以外的“普通”元素全排列,然后在“普通”元素之间及两端插入不相邻元素.跟踪训练2 排一张有5个歌唱节目和4个舞蹈节目的演出节目单.(1)任何两个舞蹈节目不相邻的排法
4、有多少种?(2)歌唱节目与舞蹈节目间隔排列的方法有多少种?(3)5个歌唱节目中A,B必须相邻,C,D,E也必须相邻,则排列的方法有多少种?9 命题角度2 定序问题例3 7人站成一排.(1)甲必须在乙的前面(不一定相邻),则有多少种不同的排列方法?(2)甲、乙、丙三人自左向右的顺序不变(不一定相邻),则有多少种不同的排列方法? 反思与感悟 这类问题的解法是采用分类法.n个不同元素的全排列有A种排法,m个不同元素的全排列有A种排法.因此A种排法中,关于m个元素的不同分法有A类,而且每一种分类的排法数是一样的.当这m个元素顺序确定时,共有种排
5、法.跟踪训练3 7名师生排成一排照相,其中老师1人,女生2人,男生4人,若4名男生的身高都不等,按从高到低的顺序站,有多少种不同的站法? 命题角度3 特殊元素与特殊位置问题例4 从包括甲、乙两名同学在内的7名同学中选出5名同学排成一列,求解下列问题:(1)甲不在首位的排法有多少种?(2)甲既不在首位,又不在末位的排法有多少种?(3)甲与乙既不在首位又不在末位的排法有多少种?(4)甲不在首位,同时乙不在末位的排法有多少种?9 反思与感悟 “在”与“不在”排列问题解题原则及方法(1)原则:解“在”与“不在”的有限制条件的排列问题时,可以从元
6、素入手也可以从位置入手,原则是谁特殊谁优先.(2)方法:从元素入手时,先给特殊元素安排位置,再把其他元素安排在其他位置上,从位置入手时,先安排特殊位置,再安排其他位置.提醒:解题时,或从元素考虑,或从位置考虑,都要贯彻到底.不能一会考虑元素,一会考虑位置,造成分类、分步混乱,导致解题错误.跟踪训练4 某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同的排课程表的方法? 类型三 数字排列问题例5 用0,1,2,3,4,5这六个数字可以组成多少个无重复数字的(1)能被5整除的五
7、位数;(2)能被3整除的五位数;(3)若所有的六位数按从小到大的顺序组成一个数列{an},则240135是第几项. 9 反思与感悟 数字排列问题是排列问题的重要题型,解题时要着重注意从附加受限制条件入手分析,找出解题的思路.常见附加条件有:(1)首位不能为0.(2)有无重复数字.(3)奇偶数.(4)某数的倍数.(5)大于(或小于)某数.跟踪训练5 (1)由数字0,1,2,3,4,5组成的奇偶数字相间且无重复数字的六位数有多少个?(2)由0,1,2,3,4,5六个数字组成的六位数中,数字1排在奇数位上的数有多少个?(注:本题中提到的“奇数位”按
8、从最高位开始从左到右依次为奇数位、偶数位来理解) 1.6位选手依次演讲,其中选手甲不排在第一个也不排在最后一个演讲,则不同的演讲次
此文档下载收益归作者所有