相似三角形的综合应用(提高)

相似三角形的综合应用(提高)

ID:47892749

大小:380.00 KB

页数:7页

时间:2019-10-19

相似三角形的综合应用(提高)_第1页
相似三角形的综合应用(提高)_第2页
相似三角形的综合应用(提高)_第3页
相似三角形的综合应用(提高)_第4页
相似三角形的综合应用(提高)_第5页
资源描述:

《相似三角形的综合应用(提高)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、相似三角形的应用【学习目标】1、探索相似三角形的性质,能运用性质进行有关计算.2、通过典型实例认识现实生活中物体的相似,能运用图形相似的知识解决一些简单的实际问题(如何把实际问题抽象为数学问题).【知识回顾】一、相似三角形的性质(1)对应边的比相等,对应角相等.(2)相似三角形的周长比等于相似比.(3)相似三角形的面积比等于相似比的平方.(4)相似三角形的对应边上的高、中线、角平分线的比等于相似比.二、相似三角形的应用:1、利用三角形相似,可证明角相等;线段成比例(或等积式);2、利用三角形相似,求线段的长等3、利用三角形相似,可以解决一些不能直接测量的

2、物体的长度.如求河的宽度、求建筑物的高度等.【典型例题】例1:如图,△ABC是一块锐角三角形余料,边BC=120mm,高AD=80mm,要把它加工成矩形零件,使一边在BC上,其余两个顶点分别在边AB、AC上,(1)若这个矩形是正方形,那么边长是多少?(2)若这个矩形的长是宽的2倍,则边长是多少?ABCQMDNPE【同步练习】如图,△ABC是一块三角形余料,AB=AC=13cm,BC=10cm,现在要把它加工成正方形零件,使正方形的一边在△ABC的边上,其余两个顶点分别在三角形另外两条边上.试求正方形的边长是多少?例2:阅读以下文字并解答问题:在“测量物体

3、的高度”7活动中,某数学兴趣小组的4名同学选择了测量学校里的四棵树的高度.在同一时刻的阳光下,他们分别做了以下工作:小芳:测得一根长为1米的竹竿的影长为0.8米,甲树的影长为4.08米(如图1).小华:发现乙树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图2),墙壁上的影长为1.2米,落在地面上的影长为2.4米.小丽:测量的丙树的影子除落在地面上外,还有一部分落在教学楼的第一级台阶上(如图3),测得此影子长为0.2米,一级台阶高为0.3米,落在地面上的影长为4.4米.小明:测得丁树落在地面上的影长为2.4米,落在坡面上影长为3.2米(如图4)

4、.身高是1.6m的小明站在坡面上,影子也都落坡面上,小芳测得他的影长为2m.图1图2图3图4(1)在横线上直接填写甲树的高度为米.(2)求出乙树的高度(画出示意图).(3)请选择丙树的高度为()A、6.5米B、5.75米C、6.05米D、7.25米(4)你能计算出丁树的高度吗?试试看.【同步练习】如图,有一路灯杆AB(底部B不能直接到达),在灯光下,小明在点D处测得自己的影长DF=3m,沿BD方向到达点F处再测得自己得影长FG=4m,如果小明得身高为1.6m,求路灯杆AB的高度.7例3:如图,已知AD是△ABC的中线,M是边AC上的一动点,,BM交AD于

5、N点。⑴如图①,若,则。如图②,若,则。如图③,若,则。⑵猜想,与存在怎样的关系?并证明你的结论。⑶当时,恰有【同步练习】如图,DE是△ABC的中位线,M是DE的中点,CM的延长线交AB于点N,则△DMN∶四边形ANME=例4:如图,在中,的面积为25,点为边上的任意一点(不与、重合),过点作,交于点.设,以为折线将翻折(使落在四边形所在的平面内),所得的与梯形重叠部分的面积记为.(1)用表示的面积;(2)求出时与的函数关系式;(3)求出时与的函数关系式;(4)当取何值时,的值最大?最大值是多少?EDBCABCA【同步练习】如图,已知矩形ABCD的边长A

6、B=2,BC=3,点P是AD边上的一动点(P异于7A、D),Q是BC边上的任意一点.连AQ、DQ,过P作PE∥DQ交AQ于E,作PF∥AQ交DQ于F.(1)求证:△APE∽△ADQ;(2)设AP的长为x,试求△PEF的面积S△PEF关于x的函数关系式,并求当P在何处时,S△PEF取得最大值?最大值为多少?例5:等腰△ABC,AB=AC=8,∠BAC=120°,P为BC的中点,小慧拿着含30°角的透明三角板,使30°角的顶点落在点P,三角板绕P点旋转.(1)如图a,当三角板的两边分别交AB、AC于点E、F时.求证:△BPE~△CFP;(2)操作:将三角板绕

7、点P旋转到图b情形时,三角板的两边分别交BA的延长线、边AC于点E、F.①探究1:△BPE与△CFP还相似吗?(只需写出结论)②探究2:连结EF,△BPE与△PFE是否相似?请说明理由;③设EF=m,△EPF的面积为S,试用m的代数式表示S.7【同步练习】如图,M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B=α,且DM交AC于F,ME交BC于G.(1)写出图中三对相似三角形,并证明其中的一对;(2)连结FG,如果α=45°,AB=,AF=3,求FG的长.例6:如图,已知抛物线y=x2+bx+c与坐标轴交于A、B、C三点,A点的坐标为(-1,

8、0),过点C的直线y=x-3与x轴交于点Q,点P是线段BC上的一个动点,过P作P

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。