广西2020版高考数学一轮复习 高考大题专项练六 高考中的概率、统计与统计案例 文

广西2020版高考数学一轮复习 高考大题专项练六 高考中的概率、统计与统计案例 文

ID:47875816

大小:121.17 KB

页数:9页

时间:2019-11-15

广西2020版高考数学一轮复习 高考大题专项练六 高考中的概率、统计与统计案例 文_第1页
广西2020版高考数学一轮复习 高考大题专项练六 高考中的概率、统计与统计案例 文_第2页
广西2020版高考数学一轮复习 高考大题专项练六 高考中的概率、统计与统计案例 文_第3页
广西2020版高考数学一轮复习 高考大题专项练六 高考中的概率、统计与统计案例 文_第4页
广西2020版高考数学一轮复习 高考大题专项练六 高考中的概率、统计与统计案例 文_第5页
资源描述:

《广西2020版高考数学一轮复习 高考大题专项练六 高考中的概率、统计与统计案例 文》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、高考大题专项练六 高考中的概率、统计与统计案例1.某工厂36名工人的年龄数据如下表:工人编号年龄工人编号年龄工人编号年龄工人编号年龄140103619272834244113120432939340123821413043441133922373138533144323343242640154524423353745163925373437842173826443549943183627423639(1)用系统抽样的方法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样的方法抽到的年龄数据为44,列出样本的年龄数据;(2)计算(1)中样本的平均值x和方差s2;(3

2、)求这36名工人中年龄在(x-s,x+s)内的人数所占的百分比.解(1)把工厂36名工人的年龄数据分为9组,每组4人.在第一分段里抽到的年龄数据44对应的编号为2,故抽取的样本编号依次为2,6,10,14,18,22,26,30,34,对应样本的年龄数据依次为44,40,36,43,36,37,44,43,37.(2)由(1)得,x=44+40+36+43+36+37+44+43+379=40,s2=19[(44-40)2+(40-40)2+(36-40)2+(43-40)2+(36-40)2+(37-40)2+(44-40)2+(43-40)2+(37-40)2]=10

3、09.(3)由(2)得x=40,s=103,则x-s=3623,x+s=4313.由表可知,这36名工人中年龄在(x-s,x+s)内共有23人,所占的百分比为2336×100%≈63.89%.2.(2018全国Ⅱ,文18)下图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型.根据2000年至2016年的数据(时间变量t的值依次为1,2,…,17)建立模型①:y^=-30.4+13.5t;根据2010年至2016年的数据(时间变量t的值依次为1,2,…,7)建立模型

4、②:y^=99+17.5t.(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.解(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为y^=-30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为y^=99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠.理由如下:(i)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=-30.4+13.5t上下,这说明利用2000年至2016年的数据建立

5、的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型y^=99+17.5t可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预

6、测值更可靠.(以上给出了2种理由,写出其中任意一种或其他合理理由均可)3.某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得上面柱状图.记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(1)若n=19,求y与x的函数解析式;(2)若要求“需更换的易

7、损零件数不大于n”的频率不小于0.5,求n的最小值;(3)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?解(1)当x≤19时,y=3800;当x>19时,y=3800+500(x-19)=500x-5700.所以y与x的函数解析式为y=3800,x≤19,500x-5700,x>19(x∈N).(2)由柱状图知,需更换的零件数不大于18的频率为0.46,不大于19的频

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。