2020版高中数学 第一章 常用逻辑用语 1.3.2 命题的四种形式学案(含解析)新人教B版选修2-1

2020版高中数学 第一章 常用逻辑用语 1.3.2 命题的四种形式学案(含解析)新人教B版选修2-1

ID:47875652

大小:228.50 KB

页数:11页

时间:2019-11-15

2020版高中数学 第一章 常用逻辑用语 1.3.2 命题的四种形式学案(含解析)新人教B版选修2-1_第1页
2020版高中数学 第一章 常用逻辑用语 1.3.2 命题的四种形式学案(含解析)新人教B版选修2-1_第2页
2020版高中数学 第一章 常用逻辑用语 1.3.2 命题的四种形式学案(含解析)新人教B版选修2-1_第3页
2020版高中数学 第一章 常用逻辑用语 1.3.2 命题的四种形式学案(含解析)新人教B版选修2-1_第4页
2020版高中数学 第一章 常用逻辑用语 1.3.2 命题的四种形式学案(含解析)新人教B版选修2-1_第5页
资源描述:

《2020版高中数学 第一章 常用逻辑用语 1.3.2 命题的四种形式学案(含解析)新人教B版选修2-1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、1.3.2 命题的四种形式学习目标 1.了解四种命题的概念,会写出所给命题的逆命题、否命题和逆否命题.2.认识四种命题之间的关系以及真假性之间的联系.3.会利用命题的等价性解决问题.知识点一 四种命题的概念命题“如果p,则(那么)q”是由条件p和结论q组成的,对p,q进行“换位”和“换质”,一共可以构成四种不同形式的命题.(1)原命题:如果p,则q;(2)条件和结论“换位”:如果q,则p,这称为原命题的逆命题;(3)条件和结论“换质”(分别否定):如果綈p,则綈q,这称为原命题的否命题.(4)条件和结论“换位”又“换质”:如果綈q,则綈p,这称为原命题的

2、逆否命题.知识点二 四种命题间的相互关系(1)四种命题间的关系(2)四种命题间的真假关系原命题逆命题否命题逆否命题真真真真真假假真假真真假假假假假由上表可知四种命题的真假性之间有如下关系:①两个命题互为逆否命题,它们有相同的真假性,即两命题等价;②两个命题为互逆命题或互否命题,它们的真假性没有关系,即两个命题不等价.1.有的命题没有逆命题.( × )2.两个互逆命题的真假性相同.( × )3.对于一个命题的四种命题,可以一个真命题也没有.( √ )4.一个命题的四种命题中,真命题的个数一定为偶数.( √ )题型一 四种命题的结构形式例1 把下列命题写成“

3、若p,则q”的形式,并写出它们的逆命题、否命题与逆否命题.(1)正数的平方根不等于0;(2)当x=2时,x2+x-6=0;(3)对顶角相等.解 (1)原命题:若a是正数,则a的平方根不等于0.逆命题:若a的平方根不等于0,则a是正数.否命题:若a不是正数,则a的平方根等于0.逆否命题:若a的平方根等于0,则a不是正数.(2)原命题:若x=2,则x2+x-6=0.逆命题:若x2+x-6=0,则x=2.否命题:若x≠2,则x2+x-6≠0.逆否命题:若x2+x-6≠0,则x≠2.(3)原命题:若两个角是对顶角,则它们相等.逆命题:若两个角相等,则它们是对顶角

4、.否命题:若两个角不是对顶角,则它们不相等.逆否命题:若两个角不相等,则它们不是对顶角.反思感悟 由原命题写出其他三种命题的关键是找到原命题的条件和结论,根据其他三种命题的定义,确定所写命题的条件和结论.跟踪训练1 写出下列命题的逆命题、否命题、逆否命题.(1)实数的平方是非负数;(2)等底等高的两个三角形是全等三角形.解 (1)逆命题:若一个数的平方是非负数,则这个数是实数.否命题:若一个数不是实数,则它的平方不是非负数.逆否命题:若一个数的平方不是非负数,则这个数不是实数.(2)逆命题:若两个三角形全等,则这两个三角形等底等高.否命题:若两个三角形不

5、等底或不等高,则这两个三角形不全等.逆否命题:若两个三角形不全等,则这两个三角形不等底或不等高.题型二 四种命题的真假判断例2 写出下列命题的逆命题、否命题、逆否命题,并判断其真假.(1)若a>b,则ac2>bc2;(2)若四边形的对角互补,则该四边形是圆的内接四边形.解 (1)逆命题:若ac2>bc2,则a>b.真命题.否命题:若a≤b,则ac2≤bc2.真命题.逆否命题:若ac2≤bc2,则a≤b.假命题.(2)逆命题:若四边形是圆的内接四边形,则该四边形的对角互补.真命题.否命题:若四边形的对角不互补,则该四边形不是圆的内接四边形.真命题.逆否命题

6、:若四边形不是圆的内接四边形,则该四边形的对角不互补.真命题.反思感悟 若原命题为真命题,则它的逆命题、否命题可能为真命题,也可能为假命题.原命题与逆否命题互为逆否命题,否命题与逆命题互为逆否命题.互为逆否命题的两个命题的真假性相同.在原命题及其逆命题、否命题、逆否命题中,真命题的个数要么是0,要么是2,要么是4.跟踪训练2 下列命题中为真命题的是(  )①“若x2+y2≠0,则x,y不全为零”的否命题;②“正三角形都相似”的逆命题;③“若m>0,则x2+x-m=0有实根”的逆否命题;④“若x-是有理数,则x是无理数”的逆否命题.A.①②③④B.①③④C

7、.②③④D.①④答案 B解析 ①原命题的否命题为“若x2+y2=0,则x,y全为零”.故为真命题.②原命题的逆命题为“若两个三角形相似,则这两个三角形是正三角形”.故为假命题.③原命题的逆否命题为“若x2+x-m=0无实根,则m≤0”.∵方程无实根,∴判别式Δ=1+4m<0,∴m<-<0.故为真命题.④原命题的逆否命题为“若x不是无理数,则x-不是有理数”.∵x不是无理数,∴x是有理数.又是无理数,∴x-是无理数,不是有理数.故为真命题.故正确的命题为①③④,故选B.题型三 等价命题的应用例3 证明:已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R

8、,若f(a)+f(b)≥f(-a)+f(-b),则a+b≥0.证明 原命题的逆否

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。