资源描述:
《【KS5U解析】福建省福州市2016年普通高中毕业班3月质量检查数学(文科)试卷含解析》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、福建省福州市2016年普通高中毕业班3月质量检查数学(文科)试卷(解析版)一、选择题(本大题共12小题,每小题5分,共60分.在每小题所给的四个答案中有且只有一个答案是正确的•把正确选项涂在答题卡的相应位置上•)1.c1设集合M={x
2、x2+3x+2>0},集合N={x
3、(寺)X04},则MUN=A.{x
4、x$-2}B.{x
5、x>-1}C.{x
6、xW・2}D.R2.已知复数z满足zi=2i+x(xGR),若z的虚部为2,贝ij
7、z
8、=(A.2B.2^2C.^53.已知命题p:z/SxeR,ex-x-1WO",则命题~p()A.VxGR,ex-x-
9、l>0B.Vx^R,ex-x-l>0C.VxWR,ex-x-1^0D.3xeR,ex-x-l>04.A.A.①②③B.②③C.③④D.②③④兀兀若2cos2a=sin(—-a),且aG(―,h),则sin2a的值为(-IB-应C.1D.亟8885.已知①x二x-1,②x二x-2,③x二x-3,④x二x-4在如图所示的程序框图中,如果输入x=10,而输fl!y=4,则在空白处可填入()6.已知数列{aj是等差数列,Ha7-2a4=6,a3=2,则公差d=()A.2^2B.4C.8D.167.在2015年全国青运会火炬传递活动屮,有编号为1,2,3,
10、4,5的5名火炬手.若从屮任选2人,则选岀的火炬手的编号相连的概率为()A•希B冷©寻D.£8.某儿何体的三视图如图所示,则该儿何体的表而积是()侧视图A.1+V2B.22+V29.已知抛物线C:与肓线尸k(x+2)(k>0)相交于A,B两点,尸为(2的焦点,若
11、fa
12、=2
13、fb
14、,贝【Jk二()C.A.10.已知函数f(X)—(x>2)X若关于X的方程f(x)=k有两个不同的实根,则JX-1)3(x<2)实数k的取值范围是()A.(0,1)B.(1,+8)C.(-1,0)D.(-8,-1)2211.已知双曲线C:(a,b>0)的左、右焦点分别为
15、F],F2,过F2的直线与双ah/曲线C的右支相交于P,Q两点,若PQ丄PF】,且
16、PF]
17、=
18、PQ
19、,则双曲线的离心率c=()A.V2+1B.2伍+1C.V5W2D.75_2V212.已知f(x)为定义在(0,+oo)上的可导函数,且f(x)>xf'(x)恒成立,则不等式x2f(丄)-f(x)>0的解集为()XA.(0,1)B.(1,2)C.(1,+oo)D.(2,+oo)二.填空题(本大题共4小题,每小题5分,共20分,把答案填在答题卡的相应位置上•)11.已知向量;二(x-5,3),b=(2,X)Kalb则x的值等于x+y^212.已知实数
20、x,y满足y,且数列4x,z,2y为等差数列,则实数z的蝕大值y>x是.13.以下命题正确的是:•①把函数y=3sin(2x+~牛)的图彖向右平移*■个单位,可得到y=3sin2x的图彖;②四边形ABCD为长方形,AB=2,BC=1,0为AB中点,在长方形ABCD内随机取一点P,取得的P点到O的距离大于1的概率为1-斗;③为了了解800名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔为40;④己知回归直线的斜率的估计值为1.23,样本点的屮心为(4,5),则回归直线方程为^=1.23x+0.08
21、.14.已知直线In:y=x-V2n与圆Cn:x2+y2=2an+n交于不同的两点Bn,neN+,数列{aj满足:ai=l,an+1=-
22、-
23、AnBn
24、2,则数列{aj的通项公式为•三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.15.在AABC中,角A,B,C的刈边分别为a,b,c,满足(2b-c)cosA=acosC.(I)求角A的大小(II)若a=3,求AABC的周长最大值.18•长时间用手机上网严重影响着学生的身体健康,某校为了解A、B两班学生手机上网的时长,分别从这两个班中随机抽取5名同学进行调查,将他们平
25、均每周手机上网的时长作为样木,绘制成茎叶图如图所示(图中的茎表示十位数字,叶表示个位数字).(I)分别求出图中所给两组样本数据的平均值,并据此估计,哪个班的学牛平均上网时间较长;(II)从A班的样本数据中随机抽取一个不超过19的数据记为a,从B班的样本数据中随机抽取一个不超过21的数据记为b,求a>b的概率.月班B班9041112021561319.如图,平行四边形ABCD中,CD=1,ZBCD=60°,BD丄CD,正方形ADEF,且面ADEF丄面ABCD.(I)求证:BD丄平而ECD.20.已知椭圆务+耸二1(a>b>0)经过点(0,^3),离
26、心率为g,且F]、F?分別为椭圆/b22的左右焦点.(I)求椭圆C的方程;(II)过点M(-4,0)作斜率为k(kHO)的直线1,交椭圆