资源描述:
《任意角的正弦、余弦、正切》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、任意角的三角函数课型:新授课课时:1课时教材分析本节课是三角函数这一章里非常重要的一节课,它是本章的基础,主要是从通过问题引导学生自主探究任意角的三角函数的生成过程,从而很好理解任意角的三角函数的定义。三角函数是基本初等函数,它是描述周期现象的重要数学模型,在数学和其他领域中具有重要的作用。我们要借助单位圆去理解任意角的三角函数(正弦、余弦、正切)的定义,为后面的学习做好准备。在本模块中,学生将通过实例学习三角函数及其基本性质,体会三角函数在解决具有变化规律的问题中的作用。教学目标1、知识与技能:掌握任意角的三角函数的定义;已
2、知角α终边上一点,会求角α的各三角函数值;记住三角函数的定义域、值域,诱导公式(一)。2、过程与方法:理解并掌握任意角的三角函数的定义;树立映射观点,正确理解三角函数是以实数为自变量的函数;通过对定义域,三角函数值的符号,诱导公式一的推导,提高学生分析、探究、解决问题的能力。3、情感态度与价值观:使学生认识到事物之间是有联系的,三角函数就是角度(自变量)与比值(函数值)的一种联系方式;学习转化的思想,培养学生严谨治学、一丝不苟的科学精神。教学重难点重点:三角函数的定义;三角函数的定义域及其确定方法;三角函数值在各个象限内的符号
3、以及诱导公式一难点:任意角正弦、余弦、正切的定义教学过程一、复习引入思考:我们已经学过锐角三角函数,知道它们都是以锐角为自变量,以比值为函数值的函数,你能用直角坐标系中角的终边上点的坐标来表示锐角三角函数吗?结论:在Rt△ABC中,设A对边为a,B对边为b,C对边为c,锐角A的正弦,余弦,正切依次为:。锐角三角函数就是以锐角为自变量,以比值为函数值的函数。思考1:角推广后,这样的三角函数的定义不再适用,我们必须对三角函数重新定义。你能用直角坐标系中角的终边上点的坐标来表示锐角三角函数吗?如图,设锐角的顶点与原点重合,始边与轴的
4、正半轴重合,那么它的终边在第一象限.在的终边上任取一点,它与原点的距离.过作轴的垂线,垂足为,则线段的长度为,线段的长度为.则;;.思考2:对于确定的角,这三个比值是否会随点在的终边上的位置的改变而改变呢?为什么?根据相似三角形的知识,对于确定的角,三个比值不以点P在的终边上的位置的改变而改变大小.我们可以将点P取在使线段的长的特殊位置上,这样就可以得到用直角坐标系内的点的坐标表示锐角三角函数:;;.单位圆:在直角坐标系中,我们称以原点为圆心,以单位长度为半径的圆称为单位圆.上述P点就是的终边与单位圆的交点,锐角的三角函数可以
5、用单位圆上点的坐标表示.二、新课讲授1.任意角的三角函数的定义结合上述锐角的三角函数值的求法,我们应如何求解任意角的三角函数值呢?显然,我们可以利用单位圆来定义任意角的三角函数.如图,设是一个任意角,它的终边与单位圆交于点,那么:(1)叫做的正弦,记做,即;(2)叫做的余弦,记做,即;(3)叫做的正切,记做,即.思考3:在上述三角函数定义中,自变量是什么?对应关系有什么特点,函数值是什么?说明:(1)当时,的终边在轴上,终边上任意一点的横坐标都等于,所以无意义,除此情况外,对于确定的值,上述三各值都是唯一确定的实数.(2)当是
6、锐角时,此定义与初中定义相同;当不是锐角时,也能够找出三角函数,因为,既然有角,就必然有终边,终边就必然与单位圆有交点,从而就必然能够最终算出三角函数值.(3)正弦,余弦,正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将这种函数统称为三角函数.2.利用定义求角的三角函数值例1.求的正弦,余弦和正切值.解:在直角坐标系中,作,的终边与单位圆的交点坐标为,所以思考:如果将变为呢?例2.已知角的终边过点,求角的正弦,余弦和正切值.思考1:如何根据例题1解答思考2:一般的,设角终边上任意一点的坐标为(x,y)
7、,它与原点的距离为r,则,你能自己给出证明吗?思考3:如果将题目中的坐标改为(-3a,-4a),题目又应该怎么做?3.三角函数的定义域和函数值符号探究:请根据上述任意角的三角函数定义,先将正弦,余弦和正切函数在弧度制下的定义域填入下表,再将这三种函数的值再各象限的符号填入下表函数定义域例3,求证:当下列不等式组成立时,角为第三象限角,反之也对证明:如果成立,那么角的终边可能位于第三或第四象限,也可能与轴的非负半轴重合;如果,所以角的终边可能位于第一或第三象限所以,角的终边只能位于第三象限,时第三象限角反过来,请同学们自己证明变
8、式训练①判断下列各式的符号1.2.;②求函数的定义域4.诱导公式一由三角函数的定义,可以知道,终边相同的角的同一三角函数的值相等,由此得到一组公式利用公式一,可以把任意角的三角函数值,转化为求0到的三角函数值例4.确定下列三角函数值的符号:(1)(2)(3)(4)变式训练:求