欢迎来到天天文库
浏览记录
ID:478485
大小:447.00 KB
页数:11页
时间:2017-08-09
《无穷限广义积分的数值计算文献综述》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、文献综述无穷限广义积分的数值计算一.前言部分定积分的数值近似称为数值求积.[1]它起源于古代用铺贴小方块近似计算不规则图形或曲边形的面积.在近似积分中,主要从定义积分的黎曼和出发,用被积函数在积分区间上有限个点上值的加权和来近似计算积分.我们一般使用牛顿-科茨求积公式,梯形公式及其复合公式,辛普森公式及其复合公式,Gauss求积公式,切比雪夫求积法,三次样条函数求积法,自适应积分法等方法来进行数值求积.在讨论积分时有两个最基本的限制:积分区间的有穷性和被积函数的有界性.但在很多实际问题中往往需要突破这些限制,考虑无穷区间上的“积分”.根据函数的变化率,利用定积分我们可以计
2、算函数在指定区间上的增量,利用变限定积分可以把握函数变化区间上增量的变化,为了把握函数在无穷区间上增量的变化,我们还需要引进并讨论无穷限积分[2].比如现在人类要发射人造地球卫星或发射完成星际航行的飞行器,就要摆脱地球强大的引力,那如何离开地球呢?地球上的物体要脱离地球引力成为环绕太阳运动的人造行星,需要的最小速度是第二宇宙速度.第二宇宙速度为11.2公里/秒,是第一宇宙速度的2倍.地面物体获得这样的速度即能沿一条抛物线轨道脱离地球.我们可以运用无穷限广义积分解决第二宇宙速度问题.在黎曼积分的定义中,被积函数和积分区间都是有界的.若被积函数或积分区间无界,则称为广义积分.
3、对无界区间,如,如果对任何有限的,在区间上可积,并且下列极限存在且为有限数,则广义积分的定义为.对无界的积分区间,可以使用有限区间上的标准求积程序计算广义积分,具体方法如下:用有限的积分区间代替无限的积分区间.选择积分范围时要注意所截掉的部分应是极小的,另外应对这一部分在整个积分中所占的份额作出估计.同时这个有限区间也不应太大,以免在利用自适应求积程序时,陷入无休止的积分函数调用之中.通过适当的变换将无界区间变成有界区间.典型的变换包括,或者.但是在变换的时候一定要注意不要引入新的奇异点或产生其它问题.还有一种方法就是采用专门计算无界区间积分的求积公式,比如说高斯-拉盖尔
4、(Gauss-laguerre)或者高斯-艾尔米特求积公式.一般采用变量替换,无穷区间的截断,无穷区间上的高斯求积公式,极限过程等方法去解决无穷限广义积分的数值计算.二.主题部分2.1数值积分的一般方法许多定积分都无法用解析方法求出.对于那些并不知道函数的表达式只能通过实验得到在一系列点上的值的积分问题也只能用数值方法.[3]2.1.1梯形法则[4]把以曲线为曲边的曲边梯形分解成小曲边梯形以后,估计小曲边梯形面积的一个方法是用左矩形或右矩形面积代替小曲边梯形面积;但是这时误差会比较大.事实上,这种方法相当于用一系列的水平线逼近曲线.我们可以把这些水平线看成是函数的零次插值
5、多项式.一个更好的方法就是用一条折线逼近曲线;事实上,我们让小矩形的上边连续倾斜直到最好地拟合曲线.得到相应的求积公式是,对所有(即次数最多是1次的全体多项式)公式精确成立.此外,它的误差项是,其中.通过多项式逼近中的误差积分,再利用积分中值定理,可以确定梯形法则的误差项.2.1.2复合梯形法则如果划分区间为:.那么在每个子区间上可应用梯形法则.这时结点未必是等距的.这样,我们得到复合梯形法则.对等间距及结点,复合梯形法则具有形式,其中求和符号上的两撇表示求和式中的第一项和最后一项都被减半.复合梯形法则的误差项是,其中.对于每个子区间上的误差项求和并利用以下事实:在内存在
6、一点使得,其中以及,即平均值,这样便得到总误差项.2.1.3辛普森法则[5]对任意区间的类似计算可得到熟悉的辛普森法则:.从它的推导过程可知,对于所有次数的多项式辛普森法则是精确成立的.出乎意料的是,对于所有次数的多项式它也精确成立.与辛普森法则联系在一起的误差项是:,其中.2.1.4Gauss公式[6]设有计算的求积公式,其中求积节点,求积系数.如果其代数精度为,则称为求积公式为Gauss-Legendre公式(简称Gauss公式),称相应的求积节点为Gauss点.由代数精度的定义知,式为Gauss公式的充分必要条件是求积节点和求积系数满足下列方程组:.Gauss积分不
7、但具有高精度,而且是稳定的,其原因是由于它的求积系数具有非负性.Gauss公式的求积系数全是正的.高斯求积公式,[7]它不但具有最高的代数精度,而且收敛性和稳定性都有保证.因此是高精度的求积公式,高斯公式的主要缺点是节点和系数无规律,所以不便编程实现,在实际应用中,可以把低阶高斯公式进行复化.2.2无穷积分的敛散性判别[8]无穷积分的基本问题就是敛散性的判别问题,是求解无穷积分近似值的一个先决条件.由定义知道,无穷积分收敛与否,取决于函数在时是否存在极限.因此可由函数极限的柯西准则导出无穷积分的柯西准则.无穷积分收敛的充要条件
此文档下载收益归作者所有