欢迎来到天天文库
浏览记录
ID:47844731
大小:212.00 KB
页数:12页
时间:2019-11-25
《二次函数和幂函数典型例题(含答案解析)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、二次函数与幂函数1.求二次函数的解析式.2.求二次函数的值域与最值.3.利用幂函数的图象和性质分析解决有关问题.【复习指导】本节复习时,应从“数”与“形”两个角度来把握二次函数和幂函数的图象和性质,重点解决二次函数在闭区间上的最值问题,此类问题经常与其它知识结合命题,应注重分类讨论思想与数形结合思想的综合应用. 基础梳理1.二次函数的基本知识(1)函数f(x)=ax2+bx+c(a≠0)叫做二次函数,它的定义域是R.(2)二次函数f(x)=ax2+bx+c(a≠0)的图象是一条抛物线,对称轴方程为x=-,顶点坐标是.①当a>0时,抛物线开口向上,函数在上递减,在上递增,当x=-时,f
2、(x)min=;②当a<0时,抛物线开口向下,函数在上递增,在上递减,当x=-时,f(x)max=.③二次函数f(x)=ax2+bx+c(a≠0)当Δ=b2-4ac>0时,图象与x轴有两个交点M1(x1,0)、M2(x2,0),
3、M1M2
4、=
5、x1-x2
6、=.(3)二次函数的解析式的三种形式:①一般式:f(x)=ax2+bx+c(a≠0);②顶点式:f(x)=a(x-m)2+h(a≠0);③两根式:f(x)=a(x-x1)(x-x2)(a≠0).2.幂函数(1)幂函数的定义形如y=xα(α∈R)的函数称为幂函数,其中x是自变量,α为常数.(2)幂函数的图象(3)幂函数的性质第一象限一定
7、有图像且过点(1,1);第四象限一定无图像;当幂函数是偶函数时图像分布第一二象限,奇函数时图像分布第一三象限;第一象限图像的变化趋势;当a<0时,递减,a>0时,递增,其中a>1时,递增速度越来越快,08、x∈R且x≠0}值域R[0,+∞)R[0,+∞){y9、y∈R且y≠0}奇偶性奇偶奇非奇非偶奇单调性增x∈[0,+∞)时,增,x∈(-∞,0]时,减增增x∈(0,+∞)时,减,x∈(-∞,0)时,减定点(0,0),(1,1)(1,1)一条主线二次函数、一元二次方程和一元二次不等式是一个有机的整10、体,要深刻理解它们之间的相互关系,能用函数与方程、分类讨论、数形结合思想来研究与“三个二次”有关的问题,高考对“三个二次”知道的考查往往渗透在其他知识之中,并且大都出现在解答题中.两种方法二次函数y=f(x)对称轴的判断方法:(1)对于二次函数y=f(x)对定义域内x1,x2,都有f(x1)=f(x2),那么函数y=f(x)图象的对称轴方程为x=;(2)对于二次函数y=f(x)对定义域内所有x,都有f(a+x)=f(a-x)成立,那么函数y=f(x)图象的对称轴方程为x=a(a为常数).两种问题 与二次函数有关的不等式恒成立问题:(1)ax2+bx+c>0,a≠0恒成立的充要条件是(211、)ax2+bx+c<0,a≠0恒成立的充要条件是双基自测1.下列函数中是幂函数的是( ).A.y=2x2B.y=C.y=x2+xD.y=-2.(2011·九江模拟)已知函数f(x)=4x2-mx+5在区间[-2,+∞)上是增函数,则f(1)的范围是( ).A.f(1)≥25B.f(1)=25C.f(1)≤25D.f(1)>253.(2011·福建)若关于x的方程x2+mx+1=0,有两个不相等的实数根,则实数m的取值范围是( ).A.(-1,1)B.(-2,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-1)∪(1,+∞)4.(2011·陕西)函数的图象是( ).5.二次函数12、y=f(x)满足f(3+x)=f(3-x)(x∈R)且f(x)=0有两个实根x1,x2,则x1+x2=________.考向一 求二次函数的解析式【例1】►已知函数f(x)=x2+mx+n的图象过点(1,3),且f(-1+x)=f(-1-x)对任意实数都成立,函数y=g(x)与y=f(x)的图象关于原点对称.求f(x)与g(x)的解析式.【训练1】已知二次函数f(x)满足f(2)=-1,f(-1)=-1,且f(x)的最大值是8.试确定此二次函数的解析式.考向二 幂函数的图象和性质【例2】►幂函数y=xm2-2m-3(m∈Z)的图象关于y轴对称,且当x>0时,函数是减函数,则m的值为( 13、 ).A.-1<m<3B.0C.1D.2【训练2】已知点(,2)在幂函数y=f(x)的图象上,点在幂函数y=g(x)的图象上,若f(x)=g(x),则x=________.考向三 二次函数的图象与性质【例3】►已知函数f(x)=x2-2ax+1,求f(x)在区间[0,2]上的最值.【训练3】已知f(x)=1-(x-a)(x-b)(a<b),m,n是f(x)的零点,且m<n,则a,b,m,n从小到大的顺序是________.双基自测1.(人教A版
8、x∈R且x≠0}值域R[0,+∞)R[0,+∞){y
9、y∈R且y≠0}奇偶性奇偶奇非奇非偶奇单调性增x∈[0,+∞)时,增,x∈(-∞,0]时,减增增x∈(0,+∞)时,减,x∈(-∞,0)时,减定点(0,0),(1,1)(1,1)一条主线二次函数、一元二次方程和一元二次不等式是一个有机的整
10、体,要深刻理解它们之间的相互关系,能用函数与方程、分类讨论、数形结合思想来研究与“三个二次”有关的问题,高考对“三个二次”知道的考查往往渗透在其他知识之中,并且大都出现在解答题中.两种方法二次函数y=f(x)对称轴的判断方法:(1)对于二次函数y=f(x)对定义域内x1,x2,都有f(x1)=f(x2),那么函数y=f(x)图象的对称轴方程为x=;(2)对于二次函数y=f(x)对定义域内所有x,都有f(a+x)=f(a-x)成立,那么函数y=f(x)图象的对称轴方程为x=a(a为常数).两种问题 与二次函数有关的不等式恒成立问题:(1)ax2+bx+c>0,a≠0恒成立的充要条件是(2
11、)ax2+bx+c<0,a≠0恒成立的充要条件是双基自测1.下列函数中是幂函数的是( ).A.y=2x2B.y=C.y=x2+xD.y=-2.(2011·九江模拟)已知函数f(x)=4x2-mx+5在区间[-2,+∞)上是增函数,则f(1)的范围是( ).A.f(1)≥25B.f(1)=25C.f(1)≤25D.f(1)>253.(2011·福建)若关于x的方程x2+mx+1=0,有两个不相等的实数根,则实数m的取值范围是( ).A.(-1,1)B.(-2,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-1)∪(1,+∞)4.(2011·陕西)函数的图象是( ).5.二次函数
12、y=f(x)满足f(3+x)=f(3-x)(x∈R)且f(x)=0有两个实根x1,x2,则x1+x2=________.考向一 求二次函数的解析式【例1】►已知函数f(x)=x2+mx+n的图象过点(1,3),且f(-1+x)=f(-1-x)对任意实数都成立,函数y=g(x)与y=f(x)的图象关于原点对称.求f(x)与g(x)的解析式.【训练1】已知二次函数f(x)满足f(2)=-1,f(-1)=-1,且f(x)的最大值是8.试确定此二次函数的解析式.考向二 幂函数的图象和性质【例2】►幂函数y=xm2-2m-3(m∈Z)的图象关于y轴对称,且当x>0时,函数是减函数,则m的值为(
13、 ).A.-1<m<3B.0C.1D.2【训练2】已知点(,2)在幂函数y=f(x)的图象上,点在幂函数y=g(x)的图象上,若f(x)=g(x),则x=________.考向三 二次函数的图象与性质【例3】►已知函数f(x)=x2-2ax+1,求f(x)在区间[0,2]上的最值.【训练3】已知f(x)=1-(x-a)(x-b)(a<b),m,n是f(x)的零点,且m<n,则a,b,m,n从小到大的顺序是________.双基自测1.(人教A版
此文档下载收益归作者所有