资源描述:
《谈构造法数学解题中的运用》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、学科数学序号69谈构造法在数学解题中的运用摘要:“构造法”作为一种重要的化归手段,在数学解题中有着重耍的作用。本文从“构造函数”、“构造方程”等常见构造及“构造模型”、“构造情境”等特殊构造出发,例谈构造法在数学解题中的运川。关键词:构造数学解题历史上有不少著名的数学家,如欧几里得、欧拉、高斯、拉格朗FI等人,都曾经用“构造法”成功地解决过数学上的难题。数学是一门创造性的艺术,蕴含着丰富的美,而灵活、巧妙的构造令人拍手叫绝,能为数学问题的解决增添色彩,更具研究和欣赏价值。近儿年來,构造法极英应用乂逐渐为数学教育界所重视,在数学竞赛中冇着一定的地位。构造需要以足够
2、的知识经验为基础,较强的观察能力、综合运用能力和创造能力为而提,根据题目的特征,对问题进行深入分析,找出“已知”与“所求(所证)”之间的联系纽带,使解题另辟蹊径、水到渠成。“构造法”作为一种重要的化归手段,在数学屮有着极为重耍的作用,现举例谈谈具在数学解题中的运用。一、构造函数理解和掌握函数的思想方法有助于实现数学从常量到变赧的这个认识上的飞跃。很多数学命题繁兀复杂,难寻入口,若巧妙运用函数思想,能使解答别具一格,耐人寻味。[例1](柯西不等式)设逐,6(匸1,2,…,n)均为实数,证明:证:构造二次函数f(x)二aibix+//=!(nD2k/=i[例2]已知
3、x,y,zG(0,1),求证:x(l-y)+y(1-z)+z(1-x)<1(笫15届俄罗斯数学竟赛题)分析:此题条件、结论均具冇一定的对称性,然而难以直接证明,不妨用构造法一试。证:构造函数f(x)=(y+z-1)x+(yz・y・z+1)Vy,ze(0,l),・•・f(0)=yz・y・z+1=(y-l)(z-l)>()f(l)=(y+z-1)+(yz-y-z+l)=yz>0而f(x)是一次函数,其图象是直线,・••由xe(0,l)恒有f(x)>0即(y+z-1)x+(yz-y-z+1)>0整理可得x(l・y)+y(l・z)+z(l・x)<1二、构造方程方程是解数
4、学题的一个垂要工具,许多数学问题,根据其数量关系,在已知和未知Z间扌签上桥梁,构造出方程,使解答简洁、合理。[例3]已知a,b,c为互不相等的实数,试证:bem"b(a-b)(a-c)+(b-a)(b-c)+(c-a)(c-b)—’’证:构造方程(x-b)(x-c)(x-a)(x-c)(X—a)(x—b)++=j(a-b)(a-c)(b-a)(b-c)q)(c_/?)一显然a,b,c为方程的三个互不相等的实根。而对任意实数x均满足(2)式。特别地,令x=0,即得(1)式。[例4]设x,y为实数,且满足关系式:「(x-1)3+1997(x-1)=-1I(y-l)3
5、+1997(y-l)=l则x+y=.(1997年全国高屮数学联赛试题)分析:此题用常规方法,分别求出x和y的值后再求x+y则既繁又难,三次方程毕竟不熟悉。若将两方程联立构造出方程(x-1)3+1997(x-1)=(1-y)3+1997(1-y)=1,利用函数f(t)=t3+1997啲单调性,易得x-l=l-y,自然、简洁。三、构造复数复数是实数的延伸,一些难以解决的实数问题通过构造转化为复数问题,虽然数的结构会变复杂,但常使问题简明化,正所谓“退一步海阔一空”。[例5J若a,b,x,yW{!E实数},且x'+yj,求证:^/a2x2+b2y2+^/a2y2+b2
6、x2=^a+b证:设Z]=ax+byi,z2=bx+ayi,贝Uyl7、+
8、Z2IMlZ1+Z2I=I(a+b)x+(a+b)yi
9、=(a+b)yjx2+y2=a+b不等式得证:四、构造代数式代数式是数学的重要组成耍素Z•,有许多性质值得我们去发现和应用。【例6】证明:对于同样的整数x和y,表达式2x+3y和9x+5y能同时被17整除。(首届IMO试题)分析:构造代数式9(2x+3y)・2(9x+5y),其值等于17y,能被17整除,结合2与9均与17互素,结论易证。%1.构造数列相当多的数学问题,尤其是证明不
10、等式,尝试一下“构造数列”能产牛意想不到的效果。(1、n<1)1+—<1+1〃丿<斤+1丿【例7】证明:(n=l,2,3分析此命题若血接证明,颇具难度,倘若构造数列Xj=X2=**e=Xn=l+^,Xn+i=l利用平均值不等式皿話严12叫/xM...Xn+
11、,顿使命题明朗化。六、构造几何图形•般来讲,代数问题较为抽象,若能通过构造将之合理转化为几何问题,利用“数形结并设BD=x,CE=y,AF=z,如图1合”这一重要思想方法,往往对增强问题的直观性,使解答事半功倍或独具匠心。【例8】(见【例2】)证:构造边长为1的正AABC,D,E,F为边上三点,显然有Sabd
12、e+Sacef+Saad