2018-2019学年高中数学 课时跟踪检测(七)综合法与分析法(含解析)新人教A版选修4-5

2018-2019学年高中数学 课时跟踪检测(七)综合法与分析法(含解析)新人教A版选修4-5

ID:47816359

大小:47.50 KB

页数:4页

时间:2019-11-16

2018-2019学年高中数学 课时跟踪检测(七)综合法与分析法(含解析)新人教A版选修4-5_第1页
2018-2019学年高中数学 课时跟踪检测(七)综合法与分析法(含解析)新人教A版选修4-5_第2页
2018-2019学年高中数学 课时跟踪检测(七)综合法与分析法(含解析)新人教A版选修4-5_第3页
2018-2019学年高中数学 课时跟踪检测(七)综合法与分析法(含解析)新人教A版选修4-5_第4页
资源描述:

《2018-2019学年高中数学 课时跟踪检测(七)综合法与分析法(含解析)新人教A版选修4-5》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、课时跟踪检测(七)综合法与分析法1.设a=,b=-,c=-,那么a,b,c的大小关系是(  )A.a>b>c      B.a>c>bC.b>a>cD.ba解析:选B 由已知,可得出a=,b=,c=,∵+>+>2.∴b

2、=-,则以下结论正确的是(  )A.a>bB.a<bC.a=bD.a,b大小不定解析:选B ∵a=-=,b=-=.而+>+>0(m>1),∴<,即aPD.P≤S<2P解析:选D ∵a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca,∴a2+b2+c2≥ab+bc+ca,即S≥P.又三角形中

3、a-b

4、

5、ca),即S<2P.5.设a,b,c都是正实数,且a+b+c=1,若M=··,则M的取值范围是________.解析:∵a+b+c=1,∴M=··=··=··≥2·2·2=8.即M的取值范围是[8,+∞).答案:[8,+∞)6.已知a>0,b>0,若P是a,b的等差中项,Q是a,b的正的等比中项,是,的等差中项,则P,Q,R按从大到小的排列顺序为________.解析:∵P=,Q=,=+,∴R=≤Q=≤P=,当且仅当a=b时取等号.答案:P≥Q≥R7.设a>b>c,且+≥恒成立,则m的取值范围是________.解析:∵a>b>c,∴a-b>0,b-c>0,a-c>0.

6、又(a-c)·=[(a-b)+(b-c)]·≥2·2=4,当且仅当a-b=b-c时取等号.∴m∈(-∞,4].答案:(-∞,4]8.已知a,b,c都是正数,求证:≥abc.证明:因为b2+c2≥2bc,a2>0,所以a2(b2+c2)≥2a2bc.①同理,b2(a2+c2)≥2ab2c.②c2(a2+b2)≥2abc2.③①②③相加得2(a2b2+b2c2+c2a2)≥2a2bc+2ab2c+2abc2,从而a2b2+b2c2+c2a2≥abc(a+b+c).由a,b,c都是正数,得a+b+c>0,因此≥abc,当且仅当a=b=c时取等号.9.设a,b,c>0,且ab+

7、bc+ca=1.求证:(1)a+b+c≥;(2)++≥(++).证明:(1)要证a+b+c≥,由于a,b,c>0,因此只需证明(a+b+c)2≥3.即证a2+b2+c2+2(ab+bc+ca)≥3,而ab+bc+ca=1,故只需证明:a2+b2+c2+2(ab+bc+ca)≥3(ab+bc+ca).即证a2+b2+c2≥ab+bc+ca.而这可以由ab+bc+ca≤++=a2+b2+c2(当且仅当a=b=c时等号成立)证得.所以原不等式成立.(2)++=.在(1)中已证a+b+c≥.因此要证原不等式成立,只需证明≥++,即证a+b+c≤1,即证a+b+c≤ab+bc+c

8、a.而a=≤,b≤,c≤.所以a+b+c≤ab+bc+ca(当且仅当a=b=c=时等号成立).所以原不等式成立.10.设实数x,y满足y+x2=0,00,ay>0,所以ax+ay≥2=2.因为x-x2=x(1-x)≤2=,又因为0a.所以ax+ay>2a,又∵0

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。