资源描述:
《示范教案(向量数乘运算及其几何意义)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2.2.3向量数乘运算及其几何意义整体设计教学分析向量的数乘运算,其实是加法运算的推广及简化,与加法、减法统称为向量的三大线性运算.教学时从加法入手,引入数乘运算,充分展现了数学知识之间的内在联系.实数与向量的乘积,仍然是一个向量,既有大小,也有方向.特别是方向与已知向量是共线向量,进而引出共线向量定理.共线向量定理是本章节中重要的内容,应用相当广泛,且容易出错.尤其是定理的前提条件:向量a是非零向量.共线向量定理的应用主要用于证明点共线或平行等几何性质,且与后续的知识有着紧密的联系.三维目标1.通过
2、经历探究数乘运算法则及几何意义的过程,掌握实数与向量积的定义,理解实数与向量积的几何意义,掌握实数与向量的积的运算律.2.理解两个向量共线的等价条件,能够运用两向量共线条件判定两向量是否平行.3.通过探究,体会类比迁移的思想方法,渗透研究新问题的思想和方法,培养创新能力和积极进取精神.通过解决具体问题,体会数学在生活中的重要作用.重点难点教学重点:1.实数与向量积的意义.2.实数与向量积的运算律.3.两个向量共线的等价条件及其运用.教学难点:对向量共线的等价条件的理解运用.课时安排1课时教学过程导入新
3、课思路1.前面两节课,我们一起学习了向量加减法运算,这一节,我们将在加法运算基础上研究相同向量和的简便计算及推广.在代数运算中,a+a+a=3a,故实数乘法可以看成是相同实数加法的简便计算方法,那么相同向量的求和运算是否也有类似的简便计算.思路2.一物体做匀速直线运动,一秒钟的位移对应的向量为a,那么在同一方向上3秒钟的位移对应的向量怎样表示?是3a吗?怎样用图形表示?由此展开新课.推进新课新知探究提出问题①已知非零向量a,试一试作出a+a+a和(-a)+(-a)+(-a).②你能对你的探究结果作出解
4、释,并说明它们的几何意义吗?③引入向量数乘运算后,你能发现数乘向量与原向量之间的位置关系吗?怎样理解两向量平行?与两直线平行有什么异同?活动:引导学生回顾相关知识并猜想结果,对于运算律的验证,点拨学生通过作图来进行.通过学生的动手作图,让学生明确向量数乘运算的运算律及其几何意义.教师要引导学生特别注意0·a=0,而不是0·a=0.这个零向量是一个特殊的向量,它似乎很不起眼,但又处处存在,稍不注意就会出错,所以要引导学生正确理解和处理零向量与非零向量之间的关系.实数与向量可以求积,但是不能进行加、减运算
5、,比如λ+a,λ-a都无法进行.向量数乘运算的运算律与实数乘法的运算律很相似,只是数乘运算的分配律有两种不同的形式:(λ+μ)a=λa+μa和λ(a+b)=λa+λb,数乘运算的关键是等式两边向量的模相等,方向相同.判断两个向量是否平行(共线),实际上就是看能否找出一个实数,使得这个实数乘以其中一个向量等于另一个向量.一定要切实理解两向量共线的条件,它是证明几何中的三点共线和两直线平行等问题的有效手段.7/7对问题①,学生通过作图1可发现,=++=a+a+a.类似数的乘法,可把a+a+a记作3a,即=
6、3a.显然3a的方向与a的方向相同,3a的长度是a的长度的3倍,即
7、3a
8、=3
9、a
10、.同样,由图1可知,图1==(-a)+(-a)+(-a),即(-a)+(-a)+(-a)=3(-a).显然3(-a)的方向与a的方向相反,3(-a)的长度是a的长度的3倍,这样,3(-a)=-3a.对问题②,上述过程推广后即为实数与向量的积.我们规定实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,它的长度与方向规定如下:(1)
11、λa
12、=
13、λ
14、
15、a
16、;(2)当λ>0时,λa的方向与a的方向相同;当λ<0时
17、,λa的方向与a的方向相反.由(1)可知,λ=0时,λa=0.根据实数与向量的积的定义,我们可以验证下面的运算律.实数与向量的积的运算律设λ、μ为实数,那么(1)λ(μa)=(λμ)a;(2)(λ+μ)a=λa+μa;(3)λ(a+b)=λa+λb.特别地,我们有(-λ)a=-(λa)=λ(-a),λ(a-b)=λa-λb.对问题③,向量共线的等价条件是:如果a(a≠0)与b共线,那么有且只有一个实数λ,使b=λa.推证过程教师可引导学生自己完成,推证过程如下:对于向量a(a≠0)、b,如果有一个实数
18、λ,使b=λa,那么由向量数乘的定义,知a与b共线.反过来,已知向量a与b共线,a≠0,且向量b的长度是向量a的长度的μ倍,即
19、b
20、=μ
21、a
22、,那么当a与b同方向时,有b=μa;当a与b反方向时,有b=-μa.关于向量共线的条件,教师要点拨学生做进一步深层探究,让学生思考,若去掉a≠0这一条件,上述条件成立吗?其目的是通过0与任意向量的平行来加深对向量共线的等价条件的认识.在判断两个非零向量是否共线时,只需看这两个向量的方向是否相同或相反即可,与这两个向