2019-2020年高中第二册(下A)数学平面和平面的位置关系

2019-2020年高中第二册(下A)数学平面和平面的位置关系

ID:47793888

大小:650.80 KB

页数:6页

时间:2019-11-14

2019-2020年高中第二册(下A)数学平面和平面的位置关系_第1页
2019-2020年高中第二册(下A)数学平面和平面的位置关系_第2页
2019-2020年高中第二册(下A)数学平面和平面的位置关系_第3页
2019-2020年高中第二册(下A)数学平面和平面的位置关系_第4页
2019-2020年高中第二册(下A)数学平面和平面的位置关系_第5页
资源描述:

《2019-2020年高中第二册(下A)数学平面和平面的位置关系》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2019-2020年高中第二册(下A)数学平面和平面的位置关系一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知直线l⊥平面,直线m平面,则下列命题中正确的是()A.B.C.D.2.在下列条件中,可判断平面α与β平行的是()A.α、β都垂直于平面r.B.α内存在不共线的三点到β的距离相等.C.l,m是α内两条直线,且l∥β,m∥β.D.l,m是两条异面直线,且l∥α,m∥α,l∥β,m∥β.3.下列命题正确的是()A.过平面外的一条直线只能作一平面与此平面垂

2、直B.平面⊥平面于,,,则C.一直线与平面的一条斜线垂直,则必与斜线的射影垂直D.、、是两两互相垂直的异面直线,为、的公垂线,则∥4.将边长为的正方形沿对角线折起,使得,则三棱锥—的体积为()A.B.C.D.5.在空间四边形ABCD中,AB=BC=CD=DA,E∈AB,F∈CD且AE:EB=CF:FD=λ(0<λ<1=设EF与AC、BD所成的角分别是α、β,则α+β=()A.大于90°        B.小于90°        C.等于90°        D.与λ的值有关6.把正方体各个面伸展成平面,则把空间分为的部

3、分数值为           (  )  A.13   B.19C.21    D.277.已知α,β是平面,m,n是直线.下列命题中不正确的是()A.若m∥n,m⊥α,则n⊥αB.若m∥α,α∩β=n,则m∥nC.若m⊥α,m⊥β,则α∥βD.若m⊥α,,则α⊥β8.已知平面平面,直线且则()A.内必存在直线与平行,且存在直线与垂直B.内不一定存在直线与平行,但必存在直线与垂直C.内不一定存在直线与平行,且不存在直线与垂直D.内必存在直线与平行,但不存在直线与垂直9.两个完全相同的长方体的长、宽、高分别为5cm,4cm

4、,3cm,把它们重叠在一起组成一个新长方体,在这些新长方体中,最长的对角线的长度是()A.B.C.D.10.已知AB是异面直线a、b的公垂线段,AB=2,且a与b成30°角,在直线a上取AP=4,则点P到直线b的距离为                         ()A.B.4C.2D.或211.二面角α—l—β的棱l上有一点P,射线PA在α内,且与棱l成45°角,与面β成30°角则二面角α—l—β的大小为      ()A.30°或150° B.45°或135°C.60°或120° D.90°12.在矩形ABCD中

5、,AB=a,AD=2b,a

6、CD的三个侧面ABC、ACD、ADB两两相互垂直,则”.15.与正方形各面成相等的角且过正方体三个顶点的截面的个数是________.16.、是两个不同的平面,、是平面及之外的两条不同直线,给出四个论断:①⊥②⊥③⊥④⊥以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题:_________________________.三、解答题:本大题满分74分.17.(本小题满分10分)已知矩形ABCD的边AB=1,BC=a,PA⊥平面ABCD,PA=1,问BC边上是否存在点Q,使得PQ⊥QD,并说明理由.18

7、.(本小题满分15分)如图,正三棱柱ABC—A1B1C1的底面边长的3,侧棱AA1=D是CB延长线上一点,且BD=BC.(Ⅰ)求证:直线BC1//平面AB1D;(Ⅱ)求二面角B1—AD—B的大小;(Ⅲ)求三棱锥C1—ABB1的体积.19.(本小题满分12分)已知空间四边形ABCD的边长都是1,又BD=,当三棱锥A—BCD的体积最大时,求二面角B—AC—D的余弦值.20.(本小题满分12分)有一矩形纸片ABCD,AB=5,BC=2,E,F分别是AB,CD上的点,且BE=CF=1,把纸片沿EF折成直二面角.(1)求BD的距离

8、;(2)求证AC,BD交于一点且被这点平分.21.(本小题满分12分)已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分别是AC、AD上的动点,且(Ⅰ)求证:不论λ为何值,总有平面BEF⊥平面ABC;(Ⅱ)当λ为何值时,平面BEF⊥平面ACD?22.(本小题满分13分)棱长

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。