欢迎来到天天文库
浏览记录
ID:47790081
大小:126.00 KB
页数:8页
时间:2019-11-14
《2019年高三数学上学期期末考试 文 新人教B版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2019年高三数学上学期期末考试文新人教B版本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共5页.考试时间120分钟.满分150分.答题前,考生务必用0.5毫米的黑色签字笔将自己的姓名、座号、考号填写在答题纸规定的位置.第Ⅰ卷(选择题共60分)注意事项:每小题选出答案后,用铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.复数满足,则(A)(B)(C)(D)【
2、答案】C由得,所以,选C.2.已知为全集,,则(A)(B)(C)(D)【答案】C因为,所以,选C.3.已知,则(A)(B)(C)(D)【答案】D因为,所以,所以,选D.4.有一个容量为的样本,其频率分布直方图如图所示,据图估计,样本数据在内的频数为(A)(B)(C)(D)【答案】C样本数据在之外的频率为,所以样本数据在内的频率为,所以样本数据在的频数为,选C.5.为等差数列,为其前项和,已知则(A)(B)(C)(D)【答案】A设公差为,则由得,即,解得,所以,所以。所以,选A.6.为假命题,则的取值范围为(A)(B)(C
3、)(D)【答案】A因为为假命题,所以,即,即,解得,即的取值范围为,所以选A.7.函数向左平移个单位后是奇函数,则函数在上的最小值为(A)(B)(C)(D)【答案】A函数向左平移个单位后得到函数为,因为此时函数为奇函数,所以,所以。因为,所以当时,,所以。当,所以,即当时,函数有最小值为,选A.8.已知三个数构成一个等比数列,则圆锥曲线的离心率为(A)(B)(C)或(D)或【答案】C因为三个数构成一个等比数列,所以,即。若,则圆锥曲线方程为,此时为椭圆,其中,所以,离心率为。若,则圆锥曲线方程为,此时为双曲线,其中,所以
4、,离心率为。所以选C.9.已知函数的定义域为,且为偶函数,则实数的值可以是(A)(B)(C)(D)【答案】B因为函数为偶函数,所以,即函数关于对称,所以区间关于对称,所以,即,所以选B.10.若直线与圆的两个交点关于直线对称,则的值分别为(A)(B)(C)(D)【答案】A因为直线与圆的两个交点关于直线对称,则与直线垂直,且过圆心,所以解得,选A.11.某几何体的三视图如右图所示,则该几何体的体积不可能是(A)(B)(C)(D)【答案】D由三视图可知,该几何体时一个侧面和底面垂直的的三棱锥,,其中底面三角形为直径三角形,,
5、,,设,则,所以三棱锥的体积为,当且仅当,即时取等号,此时体积有最大值,所以该三棱锥的体积不可能是3,选D.12.对于函数,如果存在锐角使得的图像绕坐标原点逆时针旋转角,所得曲线仍是一函数,则称函数具备角的旋转性,下列函数具有角的旋转性的是(A)(B)(C)(D)【答案】C设直线,要使的图像绕坐标原点逆时针旋转角,所得曲线仍是一函数,则函数与不能有两个交点。由图象可知选C.第Ⅱ卷(非选择题共90分)注意事项:1.请用0.5毫米的黑色签字笔将每题的答案填写在答题纸的指定位置.书写的答案如需改动,要先划掉原来的答案,然后再写
6、上新答案.2.不在指定答题位置答题或超出答题区域书写的答案无效.在试题卷上答题无效.二、填空题(本大题共4小题,每小题4分,共16分)13.函数的极值点为____________.【答案】函数的定义域为,函数的导数为,由,解得,当时,,当时,,所以当时,函数取得极大值,所以函数的极值点为。14.阅读右图所示的程序框图,运行相应的程序,输出的结果是_________.【答案】第一次循环,;第二次循环,;第三次循环,不满足条件,输出。15.已知,则的最大值为________.【答案】因为,又时,,当且仅当,即取等号,所以,即
7、的最大值为。16.已知,则函数的零点的个数为______个.【答案】4由解得或。若,当时,由,解得。当时,由得。若,当时,由,解得。当时,由得。综上共有4个零点。三、解答题(本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.)17.(本小题满分12分)在中,角所对应的边分别为,为锐角且,.(Ⅰ)求角的值;(Ⅱ)若,求的值.18.(本小题满分12分)某普通高中共有教师人,分为三个批次参加研修培训,在三个批次中男、女教师人数如下表所示:第一批次第二批次第三批次女教师男教师已知在全体教师中随机抽取1名,抽到第二
8、、三批次中女教师的概率分别是、.(Ⅰ)求的值;(Ⅱ)为了调查研修效果,现从三个批次中按的比例抽取教师进行问卷调查,三个批次被选取的人数分别是多少?(Ⅲ)若从(Ⅱ)中选取的教师中随机选出两名教师进行访谈,求参加访谈的两名教师“分别来自两个批次”的概率.19.(本小题满分12分)已知数列,,,记,,(),若对于任意,,,
此文档下载收益归作者所有