欢迎来到天天文库
浏览记录
ID:47769620
大小:226.30 KB
页数:14页
时间:2019-11-12
《2019-2020年九年级下学期中考复习第1周周测数学试题(2.11)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2019-2020年九年级下学期中考复习第1周周测数学试题(2.11)1)复习二次函数45度角的快速做法,(大题目第1,2)2)复习二次函数垂直平分的4种通俗解题方法(大题目3)3)复习面积铅垂法的外部方法(大题4)4)动点问题(大题目5-7)5)一次函数或不等式应用题1.直线y=x+4分别与x轴、y轴相交于点M,N,边长为2的正方形OABC一个顶点O在坐标系的原点,直线AN与MC相交于点P,若正方形绕着点O旋转一周,则点P到点(0,2)长度的最小值是( )A.2﹣2B.3﹣2C.D.12.如图,在直角△ABC中,∠C=90°,BC=3,AC=4,D、E分别是AC、BC上的一点,且D
2、E=3.若以DE为直径的圆与斜边AB相交于M、N,则MN的最大值为( )A.B.2C.D.3.某工厂接受了20天内生产1200台GH型电子产品的总任务.已知每台GH型产品由4个G型装置和3个H型装置配套组成.工厂现有80名工人,每个工人每天能加工6个G型装置或3个H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好全部配套组成GH型产品.(1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?(2)为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G型装置的加工,且每人每天只能加工4个G型装置.请问
3、至少需要补充多少名新工人?4.如图,抛物线y=﹣x2+bx+c与直线y=x+2交于C、D两点,其中点C在y轴上,点D的坐标为(3,).(1)求抛物线的解析式;(2)点P是y轴右侧的抛物线上一个动点,过点P作PE⊥x轴于点E,交直线CD于点F.若点P的横坐标为m,设线段PF的长度为y,求y与m之间的函数关系式,并直接写出自变量m的取值范围;(3)在(2)的条件下,是否存在点P,使∠PCF=45°?若存在,求出点P的坐标;若不存在,请说明理由.5.如图,抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B.(1)求抛物线的解析式;(2)已知点D(m,m+1)
4、在第一象限的抛物线上,求点D关于直线BC对称的点的坐标;(3)在(2)的条件下,连接BD,点P为抛物线上一点,且∠DBP=45°,求点P的坐标.6.已知抛物线y=ax2+bx+c经过A(﹣1,0)、B(2,0)、C(0,2)三点.(1)求这条抛物线的解析式;(2)如图一,点P是第一象限内此抛物线上的一个动点,当点P运动到什么位置时,四边形ABPC的面积最大?求出此时点P的坐标;(3)如图二,设线段AC的垂直平分线交x轴于点E,垂足为D,M为抛物线的顶点,那么在直线DE上是否存在一点G,使△CMG的周长最小?若存在,请求出点G的坐标;若不存在,请说明理由.7.如图1,关于x的二次函数y=
5、﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.(1)求抛物线的解析式;(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;(3)如图2,DE的左侧抛物线上是否存在点F,使2S△FBC=3S△EBC?若存在求出点F的坐标,若不存在请说明理由.8.等边△ABC的边长为2,P是BC边上的任一点(与B、C不重合),连接AP,以AP为边向两侧作等边△APD和等边△APE,分别与边AB、AC交于点M、N(如图1).(1)求证:AM=AN;(2)设BP=x.①若BM=,求x的值;②求四边形ADP
6、E与△ABC重叠部分的面积S与x之间的函数关系式以及S的最小值;③连接DE分别与边AB、AC交于点G、H(如图2).当x为何值时,∠BAD=15°?此时,以DG、GH、HE这三条线段为边构成的三角形是什么特殊三角形,请说明理由. 9.如图,G为正方形ABCD的对称中心,A(0,2),B(1,0),直线OG交AB于E,DC于F,点Q从A出发沿A→B→C的方向以个单位每秒速度运动,同时,点P从O出发沿OF方向以个单位每秒速度运动,Q点到达终点,点P停止运动,运动时间为t.求:(1)求G点的坐标.(2)当t为何值时,△AEO与△DFP相似?(3)求△QCP面积S与t的函数关系式.10.如图1
7、,矩形OABC顶点B的坐标为(8,3),定点D的坐标为(12,0),动点P从点O出发,以每秒2个单位长度的速度沿x轴的正方向匀速运动,动点Q从点D出发,以每秒1个单位长度的速度沿x轴的负方向匀速运动,PQ两点同时运动,相遇时停止.在运动过程中,以PQ为斜边在x轴上方作等腰直角三角形PQR.设运动时间为t秒.(1)当t= 时,△PQR的边QR经过点B;(2)设△PQR和矩形OABC重叠部分的面积为S,求S关于t的函数关系式;(3)如图2
此文档下载收益归作者所有