资源描述:
《八年级数学下册第十九章一次函数19.2一次函数19.2.2一次函数第2课时一次函数的图象和性质课时作业 新人教版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第2课时 一次函数的图象和性质知识要点基础练知识点1 一次函数的图象1.已知一次函数y=2x+b,其中b<0,它的函数图象可能是(A)2.若k≠0,b>0,则y=kx+b的图象可能是(C)知识点2 一次函数的性质3.(抚顺中考)一次函数y=-x-2的图象经过(D)A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限4.已知一次函数y=kx-m-2x的图象与y轴的负半轴相交,且函数值y随自变量x的增大而减小,则下列结论正确的是(A)A.k<2,m>0B.k<2,m<0C.k>2,m>0D.k<0,m<0综合能力提升练5.一次函数y=mx+n与y=m
2、nx(mn≠0)在同一平面直角坐标系内的图象可能是(C)6.关于一次函数y=2x-1,y=-2x+1的图象,下列说法正确的是(B)A.关于直线y=-x对称B.关于x轴对称C.关于y轴对称D.关于直线y=x对称7.已知一次函数y=-2x+3,当0≤x≤5时,函数y的最大值是(B)A.0B.3C.-3D.-78.已知一次函数y=-3x+3,当03、画出其图象;(3)求y>0时x的取值范围.解:(1)因为一次函数的解析式为y=3-2x,所以当y=0时,x=;当x=0时,y=3.所以与x轴的交点坐标为,与y轴的交点坐标为(0,3).(2)图略.(3)观察图象可知当x<时,y>0.11.已知直线y=(a+2)x-4a+4.(1)a为何值时,这条直线经过原点?(2)a为何值时,y随着x的增大而减小?(3)a为何值时,这条直线与y轴的交点为(0,-2)?解:(1)∵直线y=(a+2)x-4a+4经过原点,∴-4a+4=0,解得a=1.故当a=1时,这条直线经过原点.(2)∵y随着x的增大而减小,∴a+2<0,解得a<-2.故当
4、a<-2时,y随着x的增大而减小.(3)当x=0时,y=-4a+4=-2,解得a=.故当a=时,这条直线与y轴有交点(0,-2).拓展探究突破练12.设max{x,y}表示x,y两个数中的最大值.例如max{0,2}=2;max{8,12}=12;max{3,3}=3.请画出关于x的函数y=max{2x,x+2}的图象.解:当2x>x+2,即x>2时,y=max{2x,x+2}=2x;当2x≤x+2,即x≤2时,y=max{2x,x+2}=x+2.函数图象如图所示.