2017年秋八年级数学上册12.2一次函数教案沪科版

2017年秋八年级数学上册12.2一次函数教案沪科版

ID:47711786

大小:520.50 KB

页数:17页

时间:2019-10-31

2017年秋八年级数学上册12.2一次函数教案沪科版_第1页
2017年秋八年级数学上册12.2一次函数教案沪科版_第2页
2017年秋八年级数学上册12.2一次函数教案沪科版_第3页
2017年秋八年级数学上册12.2一次函数教案沪科版_第4页
2017年秋八年级数学上册12.2一次函数教案沪科版_第5页
资源描述:

《2017年秋八年级数学上册12.2一次函数教案沪科版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、12.2 一次函数第1课时 正比例函数1.初步理解正比例函数的概念及其图象的特征.2.能够画出正比例函数的图象.3.能够判断两个变量是否能够构成正比例函数关系.4.能够利用正比例函数解决简单的数学问题.重点正比例函数的概念.难点正比例函数的特征.一、创设情境,导入新课[活动1]问题1996年,鸟类研究者在芬兰给一只燕鸥(候鸟)套上标志环;4个月零1周后,人们在2.56万千米外的澳大利亚发现了它(一个月按30天计算).(1)这只百余克重的燕鸥大约平均每天飞行多少千米?(2)这只燕鸥的行程y(单位:千米)与飞行时间x(单位:天)之间

2、有什么关系?(3)这只燕鸥飞行1个半月的行程大约是多少千米?(4)对这个问题你还能提出什么问题?教师用课件或小黑板出示问题,用投影仪展示这只燕鸥飞行的距离.让学生在地图上找出芬兰和澳大利亚的位置,并将两处用直线连接.学生稍作思考,自主解决三个问题:①燕鸥每天飞行的路程;②燕鸥总行程y(千米)与飞行时间x(天)的关系式:y=200x.③燕鸥飞行一个半月的行程.老师提示:这里用函数y=200x对燕鸥的飞行路程问题进行刻画,尽管只是近似的,但它反映了燕鸥的行程与时间之间的对应规律.教师应重点关注:学生对飞行总路程与飞行时间的函数关系的

3、理解;学生能否正确指出自变量、自变量的函数、自变量的取值范围.二、合作交流,探究新知17[活动2]问题首先我们来思考这样一些问题,看看变量之间的对应规律可用怎样的函数来表示?这些函数有什么共同特点?1.圆的周长C随半径r的大小变化而变化.2.铁的密度为7.8g/cm3.铁块的质量m(g)随它的体积V(cm3)的大小变化而变化.3.每个练习本的厚度为0.5cm.一些练习本摞在一起的总厚度h(cm)随这些练习本的本数n的变化而变化.4.冷冻一个0℃的物体,使它每分钟下降2℃.物体的温度T(℃)随冷冻时间t(分)的变化而变化.教师出示

4、四个实例问题(用投影仪),要求学生:(1)能找出变量对应表达式;(2)能说出表达式中的自变量,自变量的函数.学生自主探究,分组讨论,然后分小组代表回答问题,教师对回答的问题进行评价.教师提问:C=2πr中,字母π是变量吗?引导学生观察、分析上面4个函数的表达式的共性:都是常数与自变量乘积的形式.教师口述并板书正比例函数的概念.(1)你能举出一些正比例函数的例子吗?(2)表示梯形的面积和圆的面积的函数式是否是正比例函数关系?什么情况下不是?①S=(a+b)h.②S=πr2.教师让学生看书,并提问:这里为什么强调y=kx中k是常数,

5、且k≠0?学生讨论,回答并补充.教师应重点关注:(1)不要认为表达式中的字母都是表示变量.(2)对自变量的取值范围是否能分析清楚.(3)是否概括出了这几个函数的共同特点.学生举例时教师要提醒:(1)举出实际问题;(2)能对其中的自变量、比例系数、函数关系进行解释.对举例不是正比例函数的要认真分析.[活动3]问题画出下列正比例函数的图象:(1)y=2x;(2)y=-2x.(1)我们知道了怎样用解析式表示正比例函数,那么怎样在直角坐标系中画出正比例函数的图象呢?教师在黑板上演示用描点法画出y=2x的图象.应注意:(1)操作规范,有示

6、范性.(2)要师生同画.要学生独立画出y=-2x图象.应注意:(1)评价学生所画的图象;(2)与学生一起总结画图象的主要步骤:列表、描点、连线.(2)观察分析两个图象的异同.两图象都经过________,两图象都是________,函数y=2x的图象从左向右呈________17,经过第________象限;函数y=-2x的图象从左向右呈________,经过第________象限.练习:在同一坐标系中画出y=x和y=-x的图象.[活动4]问题1.从以上作图过程可以发现正比例函数的图象有什么特征?2.经过原点与点(1,k)的直线

7、是哪个函数的图象?教师在画图过程中进行指导,学生画完图后,让学生讨论回答这两个图象的特点,与活动3中的两个图象的特点相比较.让学生根据讨论的结果概括、归纳出正比例函数图象特征,教师板书写出正比例函数图象的特征.此处,教师应重点关注:(1)学生是否通过对正比例函数解析式观察分析,发现当k>0时的函数y与自变量x同号,当k<0时函数y与自变量x异号.(2)学生通过对正比例函数图象的观察分析,发现其图象是一个随x增大而增大或减小的直线.让学生讨论是否可行.应注意:(1)提醒学生从解析式入手,当x=0或x=1时,函数y的值分别是几?(2

8、)正比例函数的图象为什么一定过(0,0)和(1,k)两点;(3)因为两点可以确定一条直线,因此,画正比例函数的图象时只需过原点(0,0)和(1,k)画一条直线即可.3.用你认为最简单的方法画出正比例函数的图象.学生练习用“两点法”画图象,教师辅导的同时让两名学生

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。