资源描述:
《数学试卷选修1-1》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、数学(文科)试卷一、选择题.(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有n只有一项符合题冃耍求)31、(2(X)9天津)设xwR,贝ij“兀二1”是“x”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件222、双曲线壬-斗=1的焦距是()32D.2a/5A.12C-V5)2B.xcosx3.已知函数y=x2sinx,则y'=A.2xsinxC・2xsinx+x2cosxD.2xcosx+x2sinx4、(2010江西)若函数f{x}=ax+bx+c,且.广(1)=2,则.厂(一1)
2、=()A.-1B.-2C.2D.05、(2010宁夏)曲线y=x-2x+l在点(1,0)处的切线方程为()A.y=x-lB.y=-x-lC.y=2x-2D.y=-2x+26、若函数f(x)=x2+bx+c的图象的顶点在第四象限,则函数广(无)的图象是()7、曲线/(兀)二f+x-2在P处的切线平行于直线y=4x-1,贝ijP点的朋标为(A.(1,0)C.(1,0)和(一1,—4)B.(2,8)D.(2,8)和(一1,一4)8、已知对任意实数兀,有/(-x)=-/(x),g(-兀)=g(x),且兀>0吋,f(兀)>0,g'(兀)〉0,则xvO
3、吋()B.r(x)>0,^(x)<0D.f(x)<09gXx)<0A.广(兀)〉0,g'(x)>0C./O)<0,gO)〉09、(2009广东)函数/(x)=(x-3)Z的单调递增区间是()A.(-00,2)B.(0,3)C.(1,4)D.(2,+oo)10、函数/(x)=ox3+bx在兀=1处有极值-2,则a,b的值分别是()A.1,-3B.1,3C.—1,3D.-1,—3TT11、函数y=x+2cosx在[0,一]上取得最大值时,兀的值为()2AC°兀小兀,兀A.0B.—C.—D.—63212、九(兀)=sin兀,为(兀)=笊兀),£(
4、兀)=斤(兀),…,£+0=尤(兀),(neN)则猛。(兀)=()A.-sinxB.sinxC.cosxD.-cosx二.填空题:(本大题共4小题,每小题5分,共20分.把答案填在题中相应的横线上)13.命题“VxGR,x?-x+3>0”的否定是314、函数j=/(%)在定义域(—,3)内可导,其图象如图,记y=fx)的导函数为y=f(x),则不等式f(x)<0的解集为15、已知函数y=f(x)的图象在点M(1,/(!))处的切线方程是y=*x+2,贝iJ/(l)+AD=16.M为抛物线y2=4x±动点,F是焦点,P是定点(3,2),则
5、MP+MF的最小值为.三.解答题:(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤。)17、(10分)求函数/(x)=-x3-4x+-的极值。318.(10分)分别求适合下列条件的标准方程:2(1)实轴长为12,离心率为一,焦点在x轴上的椭圆;3(2)顶点间的距离为6,渐近线方程为y=的双曲线的标准方程。19.已知双曲线的中心在原点,焦点为Fi(O,-272),F2(0,2V2),且离心率3^2"T"求双曲线的标准方程.20、(12分)求与双曲线亍-『1有相同的焦点,几过点M(2,l)的椭圆的方程21.讨论肓线ly
6、=kx+与双曲线C:x2-y2=1的公共点的个数。3022、(14分)已知/(x)=or+bx-2兀+c在x=2时冇极大值6,在兀=1时冇极小值,求a,b,c的值:并求/(Q在区间[-3,3]上的最人值和最小值。