专题02函数与导数(讲)高考数学(文)二轮复习讲练测含解析

专题02函数与导数(讲)高考数学(文)二轮复习讲练测含解析

ID:47674407

大小:967.25 KB

页数:43页

时间:2019-10-19

专题02函数与导数(讲)高考数学(文)二轮复习讲练测含解析_第1页
专题02函数与导数(讲)高考数学(文)二轮复习讲练测含解析_第2页
专题02函数与导数(讲)高考数学(文)二轮复习讲练测含解析_第3页
专题02函数与导数(讲)高考数学(文)二轮复习讲练测含解析_第4页
专题02函数与导数(讲)高考数学(文)二轮复习讲练测含解析_第5页
资源描述:

《专题02函数与导数(讲)高考数学(文)二轮复习讲练测含解析》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、2017年高三二轮复习讲练测之讲案【新课标版文科数学】讲一离效整合专题二函数与导数考向一函数的图象和性质L讲高考【考纲要求】函数概念与基本初等函数I(指数函数、对数函数、幕函数)(1)函数①了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.②在实际情境屮,会根据不同的需要选择恰当的方法(如图彖法、列表法、解析法)表示函数.③了解简单的分段函数,并能简单应用.④理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义.⑤会运用函数图像理解和研究函数的性质.(2)指数函数①了解指数函数模型的实际背景。②理解

2、有理指数幕的含义,了解实数指数幕的意义,常握幕的运算.③理解指数函数的概念,理解指数函数的单调性,掌握函数图像通过的特殊点.(3)对数函数①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算屮的作用.②理解对数函数的概念,理解对数函数的单调性,掌握函数图像通过的特殊点.③了解指数函数y=ax与对数函数y=log“x互为反函数(日>0,曰H1).(4)幕函数①了解幕函数的概念...1-②结合函数y=x,y=x1,y=%3,y=—,y=x1的图象,了解它们的变化情况.x(5)函数与方程①结合二次函数的

3、图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.②根据具体函数的图像,能够用二分法求相应方程的近似解.(6)函数模型及其应用①了解指数函数、对数函数以及幕函数的增长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义.②了解函数模型(如指数函数、对数函数、幕函数、分段函数等在社会生活屮普遍使用的函数模型)的广泛应用.【命题规律】函数的图象与性质历来是髙考的重点,也是热点,对于函数图象的考查体现在两个方面:一是识图;二是用图,即通过函数的图彖,利用数形结合的思想方法解决问题;对于函数的性质,主要考查两数单调性、

4、奇偶性、周期性;函数的奇偶性、周期性往往与分段函数、函数与方程结合,考查函数的求值与计算;以二次函数的图彖与性质为主,结合基本初等函数的性质综合考查分析与解决问题的能力;考查数形结合解决问题的能力等.在近几年的高考试卷中,选择题、填空题、解答题三种题型,每年都有函数试题,而且常考常新.以基本函数为背景的应用题和综合题是高考命题的新趋势.在大题中以导数为工具研究讨论函数的性质、不等式求解等综合问题•纵观近儿年的高考题,函数问题的考查,往往是小题注重基础知识基本方法,突出重点知识重点考查,大题则注重在知识的交汇点命题,与不等式、导数、解析儿何等相结

5、合,综合考查函数方程思想及数学应用意识,考查转化与化归思想、分类讨论思想及数形结合思想的理解运用;考查分析与解决问题的能力、应用意识及创新能力.例1.[2016高考北京文数】下列函数中,在区间(-1,1)上为减函数的是()A.y=—-—B.y=cosxC.y=ln(x+l)D.y=2~A1-x【答案】D【解析】由y二2-“=(*)”在R上单调递减可知D符合题意,故选D.例2.[2016高考山东文数】己知函数用)的定义域为R.当x<0时,/(兀)=疋一1:当一15x51时,=-/(x);当兀>2时,/(兀+2)=/(兀一2)•则〃)=()(A)-

6、2(B)-1(C)0(D)2【答案】D【解析】当x>-时,/(x+丄)=/(*_丄),所以当兀>丄时,函数/(兀)是周期为的周期函数,所以/(6)=/(I),又函数/(兀)是奇函数,所以/(1)=-/(-1)=-[(-1)3-1]=2,故选D.例3.[2016高考天津文数】己知函数f(x)=J++3a^X<()(a>0且X1)在R上单调递减,且关loga(x+l)+l,x>0于x的方程f(x)=2--恰有两个不相等的实数解,则的取值范围是•12【答案】[才,彳)4/T—14V【解析】由函数/(X)在R上单调递减得>Q.Ol=>L

7、

8、f(x)

9、=2-丰恰有1911?两个不相等的实数解,所以因此Q的取值范围是[扌彳).例4.[2016高考上海文科】已知*R,函数/(x)=log2(-+6Z).x⑴当d=l时,解不等式/(%)>1;(2)若关于兀的方程/(x)+log2(x2)=0的解集中恰有一个元素,求d的值;(3)设。>0,若对任意/6[-,1],函数/(兀)在区间[r?r+l]±的最大值与最小值的差不超过1,求。的取值范围.1「2【答案】(1){x

10、01,得

11、一+1>2,解得{x

12、0

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。