欢迎来到天天文库
浏览记录
ID:47643628
大小:720.66 KB
页数:25页
时间:2019-09-08
《2.52《相似》全章复习与巩固--知识讲解》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、2.52《相似》全章复习与巩固一知识讲解(提高)【学习目标】1、了解比例的基本性质,线段的比、成比例线段;2、通过具体实例认识图形的相似,探索相似图形的性质,理解相似多边形对应角相等、对应边成比例、周长的比等于相似比、面积的比等于相似比的平方,探索并掌握相似三角形的判定方法,并能利用这些性质和判定方法解决生活中的一些实际问题;3、了解图形的位似,能够利用位似将一个图形放大或缩小,在同一直角坐标系中,感受位似变换后点的坐标的变化;4、结合相似图形性质和判定方法的探索和证明,进一步培养推理能力,发展逻辑思维能力和推理论证的表达能力,以及综合运用知识的能力,运用学过的知识解决问题的
2、能力.【知识网络】删图形反多边形
3、相似三角形位似图形]・对应角相等好紛呀目等.周长比等于相似比面积比零于相似比的平方■
4、判定方法1十■相似三角形的识别判定方法2判定方法3[相似三甭「形的特征{判F对应角相等,对应边的比相等对应高的比、对应中线的比、对应角平分线的比等于相似比•周长比等于相似比-面积比等于相似比的平方卩相似图形的应用【要点梳理】要点一、相似图形及比例线段1.相似图形:在数学上,我们把形状相同的图形称为相似图形(similarfigures).要点诠释:(1)相似图形就是指形状相同,但大小不一定相同的图形;(2)“全等”是“相似”的一种特殊情况,即当“形状相同”
5、且“大小相同”时,两个图形全等;2.相似多边形如果两个多边形的对应角相等,对应边的比相等,我们就说它们是相似多边形.要点诠释:(1)相似多边形的定义既是判定方法,又是它的性质.(2)相似多边形对应边的比称为相似比.1.比例线段:对于四条线段弘力、c、d,如果其中两条线段的比与另两条线段的比相等,如我们就说这四条线段是成比例线段,简称比例线段.要点诠释:(1)若a:b=c:d,则ad=bc;(d也叫第四比例项)(2)若a:b-b:c,则b?=ac(〃称为$、c的比例中项).要点二、相似三角形1.相似三角形的判定:判定方法(一):平行于三角形一边的直线和其他两边相交,所构成的三角
6、形和原三角形相似.判定方法(二):如果两个三角形的三组对应边的比相等,那么这两个三角形相似.判定方法(三):如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.要点诠释:此方法要求用三角形的两边及其夹角来判定两个三角形相似,应用时必须注意这个角必须是两边的夹角,否则,判断的结果可能是错误的.判定方法(四):如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.要点诠释:要判定两个三角形是否相似,只需找到这两个三角形的两个对应角相等即可,对于直角三角形而言,若有一个锐角对应相等,那么这两个三角形相似.2.相似三角形的性质:(1)相
7、似三角形的对应角相等,对应边的比相等;(2)相似三角形中的重要线段的比等于相似比;相似三角形对应高,对应中线,对应角平分线的比都等于相似比.要点诠释:要特别注意“对应”两个字,在应用时,要注意找准对应线段.(3)相似三角形周长的比等于相似比;(4)相似三角形面积的比等于相似比的平方。3•相似多边形的性质:(1)相似多边形的对应角相等,对应边的比相等.(2)相似多边形的周长比等于相似比.(3)相似多边形的面积比等于相似比的平方.要点三、位似1•位似图形定义:如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心.2.
8、位似图形的性质:(1)位似图形的对应点和位似中心在同一条直线上;(2)位似图形的对应点到位似中心的距离之比等于相似比;(3)位似图形中不经过位似中心的对应线段平行.要点诠释:(1)位似图形与相似图形的区别:位似图形是一种特殊的相似图形,而相似图形未必能构成位似图形.(2)位似变换中对应点的坐标变化规律:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.要点四、黄金分割1.定义:如图,将一条线段AB分割成大小两条线段AP、PB,若小段与大段的长度之比等于大段的长度与全长之PRAD比,即一=——(此时线段AP叫作线段PB、A
9、B的比例中项),则P点就是线段AB的黄金分割点(黄金点),APAB这种分割就叫黄金分割.APB1.黄金三角形:顶角为36°的等腰三角形,它的底角为72°,恰好是顶角的2倍,人们称这种三角形为黄金三角形.黄金三角形性质:底角平分线将其腰黄金分割.要点五、射影定理在RtAABC中,ZACB=90°,CD丄AB于D,AAABC^AACD^ACBD(“角角”)ACD2=ADBD;AC2=ADAB;BC2=BDAB(射影定理);AC•BC=AB•CD(等积).【典型例题】类型一、相似三角形C1.已知:如图,,AC
此文档下载收益归作者所有