欢迎来到天天文库
浏览记录
ID:47605584
大小:131.50 KB
页数:9页
时间:2019-09-28
《初中数学二次函数的应用(二)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、二次函数的应用◆目标指引1.运用二次函数的知识去分析问题、解决问题,并在运用中体会二次函数的实际意义.2.体会利用二次函数的最值方面的性质解决一些实际问题.3.经历把实际问题的解决转化为数学问题的解决的过程,学会运用这种“转化”的数学思想方法.◆要点讲解1.在具体问题中经历数量关系的变化规律的过程,运用二次函数的相关知识解决简单的实际问题,体会二次函数是刻画现实世界的一个有效的数学模型.2.运用函数思想求最值和数形结合的思想方法研究问题.◆学法指导1.当涉及最值问题时,应运用二次函数的性质选取合适的变量,建立目标函数,再求该目标函数的最值,求最值时应注意两点:(1)变量的取值范围;(2)求最
2、值时,宜用配方法.2.有关最大值或最小值的应用题,关键是列出函数解析式,再利用函数最值的知识求函数值,并根据问题的实际情况作答.◆例题分析【例1】如图,在△ABC中,∠B=90°,AB=6cm,BC=12cm,点P从点A开始,沿着AB向点B以1cm/s的速度移动;点Q从点B开始,沿BC边向点C以2cm/s的速度移动,设P,Q同时出发,问:(1)经过几秒后P,Q的距离最短?(2)经过几秒后△PBQ的面积最大?最大面积是多少?【分析】这是一个动点问题,也是一个最值问题,设经过ts,显然AP和BQ的长度分别为AP=t,BQ=2t(0≤t≤6).PQ的距离PQ==.因此,只需求出被开方式5t2-12
3、t+36的最小值,就可以求P,Q的最短距离.9【解】(1)设经过ts后P,Q的距离最短,则:∵PQ====∴经过s后,P,Q的距离最短.(2)设△PBQ的面积为S,则S=BP·BQ=(6-t)·2t=6t-t2=9-(t-3)2∴当t=3时,S取得最大值,最大值为9.即经过3s后,△PBQ的面积最大,最大面积为9cm2.【注意】对于动点问题,一般采用“以静制动”的方法,抓住某个静止状态,寻找等量关系.在求最值时,可用配方法或公式法,同时取值时要注意自变量的取值范围.【例2】某高科技发展公司投资1500万元,成功研制出一种市场需求较大的高科技替代产品,并投入资金500万元进行批量生产.已知生产
4、每件产品的成本为40元,在销售过程中发现:当销售单价定为100元时,年销售量为20万件;销售单价若增加10元,年销售量将减少1万件.设销售单价为x(元),年销售量为y(万件),年获利额(年获利额=年销售额-生产成本-投资)为z(万元).(1)试写出y与x之间的函数关系式(不必写出x的取值范围);(2)试写出z与x之间的函数关系式(不必写出x的取值范围);(3)计算销售单价为160元时的年获利额,并说明:得到同样的年获利额,销售单价还可以定为多少元?相应的年销量分别为多少万件?(4)公司计划:在第一年按年获利额最大时确定的销售单价进行销售;第二年的年获利额不低于1130万元,请你借助函数的大致
5、图象说明,第二年的销售单价x(元)应确定在什么范围?【分析】本题以传统的经济活动中的利润、销售决策问题为背景,设计成数学应用题,引导学生主动关心和参与日常生活中的经济活动,把实际问题抽象成数学问题,运用函数性质和方程知识来解题.【解】(1)依题意知:当销售单价定为x元时,年销量减少(x-100)万件.9∴y=20-(x-100)=-x+30.即y与x之间的函数关系式是y=-x+30.(2)由题意可得:z=(30-x)(x-40)-500-1500=-x2+34x-3200.即z与x之间的函数关系式为z=-x2+34x-3200.(3)∵当x=160时,z=-×1602+34×160-3200
6、=-320,∴-320=-x2+34x-3200,即x2-340x+28800=0.由x1+x2=-得,160+x=340,∴x=180.即得到同样的年获利额,销售单价还可以定为180元.当x=160时,y=-×160+30=14,当x=180时,y=-×180+30=12.所以相应的年销售量分别为14万件和12万件.(4)∵z=-x2+34x-3200=-(x-170)2-310,∴当x=170时,z取得最大值为-310.即当销售单价为170元时,年获利额最大,并且到第一年底公司还差310万元就可以收回全部投资.第二年的销售单价定为x元时,则年获利额为:z′=(30-x)(x-40)-31
7、0=-x2+34x-1510.当z′=1130时,即1130=-x2+34x-1510,解得x1=120,x2=220.9∴函数z′=-x2+34x-1510的大致图象如图所示.由图象可看出:当120≤x≤220时,z≥1130.∴第二年的销售单价应确定在不低于120元且不高于220元的范围内.◆练习提升一、基础训练1.函数y=的最大值是______.2.炮弹从炮口射出后飞行的高度h(米)与飞行的时间t(秒)
此文档下载收益归作者所有