作业.3《分式方程》教学设计(谢捷)1

作业.3《分式方程》教学设计(谢捷)1

ID:47566781

大小:95.50 KB

页数:4页

时间:2019-09-19

作业.3《分式方程》教学设计(谢捷)1_第1页
作业.3《分式方程》教学设计(谢捷)1_第2页
作业.3《分式方程》教学设计(谢捷)1_第3页
作业.3《分式方程》教学设计(谢捷)1_第4页
资源描述:

《作业.3《分式方程》教学设计(谢捷)1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、§16.3《分式方程》谢捷初二3班2012.2.28一、教材分析1、教学内容的地位和作用《分式方程》新人教版数学八年级下册第十六章第三单元第一课时的内容,是建立在整式方程基础上的学习;分式方程是方程模型的一种,是刻画现实世界的有效模型,在数与代数中占有重要地位。分式方程与实际生活紧密联系,更能充分体现数学的科学性,体现数学的应用价值,能帮助学生从数量关系角度更准确清晰地认识、描述和把握现实世界,使学生完善知识结构,提高计算能力,获得必需的数学能力。2、教学目标基于以上分析和数学课程标准的要求,制定了本节课的教学目标。知识技能:1.理解分式

2、方程的意义.2.了解解分式方程的基本思路和解法.3.理解解分式方程时可能无解的原因,并掌握解分式方程的验根的方法。数学思考:能将实际问题中的相等关系用分式方程表示,体会分式方程的模型作用。解决问题:经历“实际问题——分式方程——整式方程”的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想,培养学生的应用意识。情感态度:在活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值。3、教学重点、难点重点:解分式方程的基本思路和解法。难点:理解解分式方程时可能无解的原因。二、学情分析学生在已经学习了

3、一元一次方程、二元一次方程组的基础上,明确了解整式方程的方法步骤后来学习分式方程。初二学生已经具有了一定的类比、分析、归纳能力,但是思维的严谨性仍相对薄弱,虽然他们喜爱学习活泼的内容,并乐于用自己的方式去学习,用自己的头脑去思考,但仍需老师引导其由感性认识到理性认识。同时学生已经学习了分式的意义,这对理解分式方程可能无解这一教学难点有很大帮助。4三、教学策略本节课是在七年级学过的整式方程一元一次方程基础上,介绍分式方程及其解法,我采用“以旧推新”探究式教学方法,真正体现以学生为主体,倡导“自主学习,先学后练”理念,启发引导学生发现解决问题

4、的方法,注重知识的形成过程。教学中采用互动式学习模式,用问题做载体,通过合作、讨论、交流、归纳、辨析、反思、评价、质疑等活动实现互动,创设和谐民主的课堂氛围。四、教学过程设计(设计为5个环节)教学环节教学内容设计意图创设情境导入新课问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用的时间,与以最大航速逆流航行60千米所用的时间相等,江水的流速为多少?分析:设水流的速度是v千米/时.填空:(1)轮船顺流航行速度为20+v千米/时,逆流航行速度为20--v千米/时.(2)顺流航行100千米所用时间为小时;(

5、3)逆流航行60千米所用时间为小时;(4)根据题意可列方程为.在学生完成填空的过程中,教师关注学生能否把实际问题转化成数学问题,能否找到相等关系列出方程,基础较差的学生对于该题的理解是否有困难,应加以适当的指导。通过实际问题引入,说明数学来源于生活实际,实际问题需要进一步学习数学,同时激发学生的求知欲。通过问题填空让学生理解实际问题的分析过程归纳定义寻求解法议一议方程特征:教师提出问题,学生思考、讨论后在全班交流。学生归纳出:该方程的特征是分母中含有未知数。教师板演出分式方程的意义。归纳确定是不是分式方程,主要是看是否符合分式方程的概念,

6、方程中含有分式,并且分母中含有未知数,像这样的方程才属于分式方程.由此可知:有理方程包含整式方程和分式方程,分式方程转化整式方程.讨论怎样解方程鼓励学生寻求解决问题的办法,引导学生将分式方程转化为整式方程,学生自然会想到去分母来实现这种转变。1、让学生自己解这个方程,并让学生说明方法,并验证2、你能结合解法,归纳出解分式方程的基本思路和做法吗?归纳上述解分式方程的过程,实质上是将方程的两边乘以同一个整式,约去分母,把分式方程转化为整式方程来解,所乘的整式通常取方程中出现的各分母的最简公分母。让学生自己分析特点给予定义,使学生有成就感。增加

7、体验,感受新知怎样解分式方程,这是本节的核心问题。这里又一次让学生运用“转化”思想。通过学生的讨论,向学生渗透“转化”的数学思想。试一试解方程=让学生做,并验证4探究分析解决难点五、比较,讨论3、如何检验分式方程的解?4、总结解分式方程的一般步骤:学生先独立解决问题,然后提出自己的看法讨论。在学生讨论期间,教师应下到学生当中,参与学生的数学活动,鼓励学生勇于探索、实践,解释产生这一现象的原因,并懂得在解分式方程时一定要进行检验。师生合作形成共识:明确因为x=5使原方程没有意义,因此x=5不是原分式方程的根,所以原方程无解(提示:一元方程的

8、解也可称为方程的根)①增根:将分式方程变形为整式方程时,方程两边同乘以一个含有未知数的整式,并约去分母,有可能产生不适合原方程的解(或根),这种根通常称为增根.②解分式方程时必须进行检验.③为

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。