欢迎来到天天文库
浏览记录
ID:47437494
大小:330.00 KB
页数:7页
时间:2020-01-11
《初二勾股定理复习课导学案》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、勾股定理复习导学案一、知识要点:1、勾股定理勾股定理:直角三角形两直角边的平方和等于斜边的平方。也就是说:如果直角三角形的两直角边为a、b,斜边为c,那么a2+b2=c2。公式的变形:a2=c2-b2,b2=c2-a2。勾股定理在西方叫毕达哥拉斯定理,也叫百牛定理。它是直角三角形的一条重要性质,揭示的是三边之间的数量关系。它的主要作用是已知直角三角形的两边求第三边。勾股定理是一个基本的几何定理,它是用代数思想解决几何问题的最重要的工具之一,是数形结合的纽带之一。2、勾股定理的逆定理如果三角形ABC的三边长
2、分别是a,b,c,且满足a2+b2=c2,那么三角形ABC是直角三角形。这个定理叫做勾股定理的逆定理.该定理在应用时,同学们要注意处理好如下几个要点:①已知的条件:某三角形的三条边的长度.②满足的条件:最大边的平方=最小边的平方+中间边的平方.③得到的结论:这个三角形是直角三角形,并且最大边的对角是直角.④如果不满足条件,就说明这个三角形不是直角三角形。3、勾股数满足a2+b2=c2的三个正整数,称为勾股数。注意:①勾股数必须是正整数,不能是分数或小数。②一组勾股数扩大相同的正整数倍后,仍是勾股数。4、最
3、短距离问题:主要运用的依据是。二、知识结构:直角三角形勾股定理应用判定直角三角形的一种方法三、考点剖析考点一:利用勾股定理求面积6求:(1)阴影部分是正方形;(2)阴影部分是长方形;(3)阴影部分是半圆.2.如图,以Rt△ABC的三边为直径分别向外作三个半圆,试探索三个半圆的面积之间的关系.考点二:在直角三角形中,已知两边求第三边例(09年山东滨州)如图2,已知△ABC中,AB=17,AC=10,BC边上的高,AD=8,则边BC的长为( )A.21 B.15 C.6 D
4、.以上答案都不对【强化训练】:1.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为.2.(易错题、注意分类的思想)已知直角三角形的两边长为3、2,则另一条边长的平方是3、已知直角三角形两直角边长分别为5和12,求斜边上的高.(结论:直角三角形的两条直角边的积等于斜边与其高的积,ab=ch)考点三:应用勾股定理在等腰三角形中求底边上的高例、(09年湖南长沙)如图1所示,等腰中,,是底边上的高,若,求①AD的长;②ΔABC的面积. 考点四:应用勾股定理解决楼梯上铺地毯问题例、(09年滨州)某楼梯
5、的侧面视图如图3所示,其中米,,6,因某种活动要求铺设红色地毯,则在AB段楼梯所铺地毯的长度应为 .分析:如何利用所学知识,把折线问题转化成直线问题,是问题解决的关键。仔细观察图形,不难发现,所有台阶的高度之和恰好是直角三角形ABC的直角边BC的长度,所有台阶的宽度之和恰好是直角三角形ABC的直角边AC的长度,只需利用勾股定理,求得这两条线段的长即可。考点五、利用列方程求线段的长(方程思想)1、小强想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚
6、好接触地面,你能帮他算出来吗?ABC【强化训练】:折叠矩形ABCD的一边AD,点D落在BC边上的点F处,已知AB=8CM,BC=10CM,求CF和EC。.ABCEFD考点六:应用勾股定理解决勾股树问题6例、如右图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为5,则正方形A,B,C,D的面积的和为 分析:勾股树问题中,处理好两个方面的问题,一个是正方形的边长与面积的关系,另一个是正方形的面积与直角三角形直角边与斜边的关系。点评:请同学们自己把其内在的一般变化规律总
7、结一下。考点七:应用勾股定理解决数学风车问题例7、(09年安顺)图甲是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的。在Rt△ABC中,若直角边AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图乙所示的“数学风车”,则这个风车的外围周长(图乙中的实线)是______________。分析:因为,直角边AC=6,BC=5,当将四个直角三角形中边长为6的直角边分别向外延长一倍后,得到四个直角边分别是12和5的直角三角形,所求的最长实边恰好是这些直角三角形的斜边
8、长,因此,斜边长为:=13,较短的实边长是6,所以,这个风车的外围周长为:4×13+4×6=76。解:这个风车的外围周长为76。考点八:判别一个三角形是否是直角三角形例1:分别以下列四组数为一个三角形的边长:(1)3、4、5(2)5、12、13(3)8、15、17(4)4、5、6,其中能够成直角三角形的有6【强化训练】:已知△ABC中,三条边长分别为a=n-1,b=2n,c=n+1(n>1).试判断该三角形是否是直角三角形,若
此文档下载收益归作者所有