欢迎来到天天文库
浏览记录
ID:47361364
大小:2.04 MB
页数:16页
时间:2020-01-10
《动态几何变化问题》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、.--------动态几何变化问题(★★★★)以运动的观点探究几何图形部分变化规律的问题,称之为动态几何问题.动态几何问题充分体现了数学中的“变”与“不变”的和谐统一,其特点是图形中的某些元素(点、线段、角等)或某部分几何图形按一定的规律运动变化,从而又引起了其它一些元素的数量、位置关系、图形重叠部分的面积或某部分图形的形状等发生变化,但是图形的一些元素数量和关系在运动变化的过程中却互相依存,具有一定的规律可寻.1.了解动态几何问题涉及的常见情况;2.掌握讲义中涉及的动态几何变换的思考策略与解题方法;3.数
2、形结合、空间想象能力和综合分析能力的训练。本部分建议时长5分钟“知识结构”这一部分的教学,老师在教学时刻根据每种情况进行简单例举,也可让学生进行回顾例举考点一、建立动点问题的函数解析式动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.下面结合中考试题举例分析.一、应用勾股定理建立函数解析式。二、应用比例式建立函数解析式。三、应用求图形面积的方法建立函数关系式。考点二、动态几何型压轴题动态几何特点----问题背景是特
3、殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。一、以动态几何为主线的压轴题。(一)点动问题。(二)线动问题。(三)面动问题。二、解决动态几何问题的常见方法有:1、特殊探路,一般推证。2、动手实践,操作确认。3、建立联系
4、,计算说明。三、专题二总结,本大类习题的共性:..1.代数、几何的高度综合(数形结合);着力于数学本质及核心内容的考查;四大数学思想:数学结合、分类讨论、方程、函数.2.以形为载体,研究数量关系;通过设、表、列获得函数关系式;研究特殊情况下的函数值。考点三、双动点问题点动、线动、形动构成的问题称之为动态几何问题.它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题.1以双动点为载体,探求函数图象问题。2以双动点为载体,探求结论开放性问题。3以双动点为载体,探求存在性问题。4以双动
5、点为载体,探求函数最值问题。这类试题信息量大,解题时需要用运动和变化的眼光去观察和研究问题,挖掘运动、变化的全过程,并特别关注运动与变化中的不变量、不变关系或特殊关系,动中取静,静中求动。考点四、函数中因动点产生的相似三角形问题考点五、以圆为载体的动点问题动点问题是初中数学的一个难点,中考经常考察,有一类动点问题,题中未说到圆,却与圆有关,只要巧妙地构造圆,以圆为载体,利用圆的有关性质,问题便会迎刃而解;此类问题方法巧妙,耐人寻味。本部分建议时长25分钟1、建立函数型、1.(★★★)如图,在边长为4的正方形
6、ABCD中,动点P从A点出发,以每秒1个单位长度的速度沿AB向B点运动,同时动点Q从B点出发,以每秒2个单位长度的速度沿BC→CD方向运动,当P运动到B点时,P、Q两点同时停止运动.设P点运动的时间为t,△APQ的面积为S,则S与t的函数关系的图象是()A.B...C.D.【分析】∵动点Q从B点出发,以每秒2个单位长度的速度沿BC→CD方向运动,∴点Q运动到点C的时间为4÷2=2秒。由题意得,当0≤t≤2时,即点P在AB上,点Q在BC上,AP=t,BQ=2t,,为开口向上的抛物线的一部分。当2<t≤4时,即
7、点P在AB上,点Q在DC上,AP=t,AP上的高为4,,为直线(一次函数)的一部分。观察所给图象,符合条件的为选项D。故选D。答案:D2.(★★★)如图,正方形ABCD的边长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿A→B→C和A→D→C的路径向点C运动,设运动时间为x(单位:s),四边形PBDQ的面积为y(单位:cm2),则y与x(0≤x≤8)之间函数关系可以用图象表示为()A.B.C.D.【分析】①0≤x≤4时,y=S△ABD﹣S△APQ=×4×4﹣•x•x=﹣x2+8,②4≤x≤8时
8、,y=S△BCD﹣S△CPQ=×4×4﹣•(8﹣x)•(8﹣x)=﹣(8﹣x)2+8,..∴y与x之间的函数关系可以用两段开口向下的二次函数图象表示,纵观各选项,只有B选项图象符合。故选B。答案:B3.(★★★★)直线与坐标轴分别交于两点,动点同时从点出发,同时到达点,运动停止.点沿线段运动,速度为每秒1个单位长度,点沿路线→→运动.(1)直接写出两点的坐标;(2)设点的运动时间为秒,的面积为,求出与之间的函数关
此文档下载收益归作者所有