欢迎来到天天文库
浏览记录
ID:47311376
大小:15.11 KB
页数:3页
时间:2019-09-04
《数学人教版六年级下册鸽巢原理教学设计》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、新人教版小学六年级下册第五单元数学广角——《鸽巢原理》教学设计执教人:樊明丽教学内容:P68——P69,例1,例2及相关练习教学目标1、知识与技能:通过操作、观察、比较、推理等活动,初步了解鸽巢原理,学会简单的鸽巢原理分析方法,运用鸽巢原理的知识解决简单的实际问题。2、过程与方法:在鸽巢原理的探究过程中,使学生逐步理解和掌握鸽巢原理,经历将具体问题数学化的过程,培养学生的模型思想。3、情感态度与价值观:通过对鸽巢原理的灵活运用,感受数学的魅力,体会数学的价值,提高学生解决问题的能力和兴趣。教学重难点教学重点:经历“鸽巢原理”
2、的探究过程,掌握先“平均分”,再调整的方法。理解“总有”“至少”的意义,理解“至少数=商数+1”。教学难点:理解“鸽巢原理”,并对一些简单实际问题加以“模型化”教学准备多媒体课件、杯子若干个教学过程一、创设情境,导入新课1、老师组织学生做“抢椅子”游戏(请3位同学上来,摆开2条椅子),并宣布游戏规则。师:像这样的现象中隐藏着什么数学奥秘呢?这节课我们就一起来研究这个原理。-------出示课题2、讲述鸽巢原理的来历。二、自主学习、探究新知1、把4支笔放进3个杯子里,有几种放法?先猜一猜,再动手放一放。从中你发现了什么?说一说
3、你的理由。2、借助“摆放图”或“数的分解”的方法把各种情况都表示出来。3、举一反三三、小组讨论、共同研究1、小组交流:“不管怎么放,总有一个杯子里至少有2支笔”,这句话说得对吗?学生尝试回答交流后明确:(1)四种情况:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)(2)每种摆法中最多的一个杯子放进了:4支、3支、2支。(3)总有一个杯子至少放进了2支笔。(4)质疑:第一、二种放法,并没有找出至少数,第三、四种放法有什么特点?(尽可能把笔平均放进杯子里)(5)强调:这句话中“总有”是什么意思?(一定有)。这句话
4、里“至少有2支”是什么意思?(最少有2支,不少于2支,包括2支及2支以上)2、合作探究:(1)7只鸽子飞回3个鸽舍,至少有多少只鸽子要飞进同一个鸽舍。为什么?(2)7只鸽子飞回4个鸽舍,至少有多少只鸽子要飞进同一个鸽舍。为什么?3、举例说明类似鸽巢问题的一些生活实例。4、小结:当m÷n=a……b(m>n>1)成立时,把m个物体放进n个抽屉里(m>n>1),不管怎么放,总有一个抽屉至少放进a+1个物体。即计算的绝招:物体数÷抽屉数=商……余数至少数=商+1四、应用巩固,及时反馈1、选择(1)、将9个鸡蛋放进2个篮子里,总有一个
5、篮子里至少放了()个鸡蛋。A、2B、3C、4D、5(2)、从街上随便找来13个人,至少有()个人是在同一个月出生。A、2B、3C、12D、132、从一副扑克牌中取出两张王牌,在剩下的52张扑克牌任意抽牌。(1)从中抽出5张牌,至少有几张是同花色?18张呢?(2)从中抽出20张牌,至少有几张数字相同?五、课堂总结学生畅谈收获六、作业设计P711、2、3题七、板书设计鸽巢原理把4支笔放进3个杯子里,怎么放?(4,0,0)(3,1,0)(2,2,0)(2,1,1)尽量平均分总有一个杯子至少放进了2支笔总有:一定有至少:不少于4÷3
6、=1……17÷3=2……17÷4=1……3物体数÷抽屉数=商……余数至少数=商+1
此文档下载收益归作者所有