欢迎来到天天文库
浏览记录
ID:47309429
大小:1.32 MB
页数:12页
时间:2019-09-03
《2010年高考数学试题分类汇编--立体几何(选择题)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2010年高考数学试题分类汇编——立体几何(2010浙江理数)(6)设,是两条不同的直线,是一个平面,则下列命题正确的是(A)若,,则(B)若,,则[来源:学科网ZXXK](C)若,,则(D)若,,则解析:选B,可对选项进行逐个检查。本题主要考察了立体几何中线面之间的位置关系及其中的公理和判定定理,也蕴含了对定理公理综合运用能力的考察,属中档题(2010全国卷2理数)(11)与正方体的三条棱、、所在直线的距离相等的点(A)有且只有1个(B)有且只有2个(C)有且只有3个(D)有无数个【答案】D【解析】
2、直线上取一点,分别作垂直于于则分别作,垂足分别为M,N,Q,连PM,PN,PQ,由三垂线定理可得,PN⊥PM⊥;PQ⊥AB,由于正方体中各个表面、对等角全等,所以,∴PM=PN=PQ,即P到三条棱AB、CC1、A1D1.所在直线的距离相等所以有无穷多点满足条件,故选D.[来源:学
3、科
4、网Z
5、X
6、X
7、K](2010全国卷2理数)(9)已知正四棱锥中,,那么当该棱锥的体积最大时,它的高为(A)1(B)(C)2(D)3【答案】C【命题意图】本试题主要考察椎体的体积,考察告辞函数的最值问题.[来源:学科网ZX
8、XK]【解析】设底面边长为a,则高所以体积,设,则,当y取最值时,,解得a=0或a=4时,体积最大,此时,故选C.(2010陕西文数)8.若某空间几何体的三视图如图所示,则该几何体的体积是[B](A)2(B)1(C)(D)解析:本题考查立体图形三视图及体积公式如图,该立体图形为直三棱柱所以其体积为(2010辽宁文数)(11)已知是球表面上的点,,,,,则球的表面积等于(A)4(B)3(C)2(D)解析:选A.由已知,球的直径为,表面积为(2010辽宁理数)(12)(12)有四根长都为2的直铁条,若再选
9、两根长都为a的直铁条,使这六根铁条端点处相连能够焊接成一个三棱锥形的铁架,则a的取值范围是(A)(0,)(B)(1,)(C)(,)(D)(0,)【答案】A【命题立意】本题考查了学生的空间想象能力以及灵活运用知识解决数学问题的能力。【解析】根据条件,四根长为2的直铁条与两根长为a的直铁条要组成三棱镜形的铁架,有以下两种情况:(1)地面是边长为2的正三角形,三条侧棱长为2,a,a,如图,此时a可以取最大值,可知AD=,SD=,则有<2+,即,即有a<(2)构成三棱锥的两条对角线长为a,其他各边长为2,如图
10、所示,此时a>0;综上分析可知a∈(0,)(2010全国卷2文数)(11)与正方体ABCD—A1B1C1D1的三条棱AB、CC1、A1D1所在直线的距离相等的点[来源:Zxxk.Com](A)有且只有1个(B)有且只有2个(C)有且只有3个(D)有无数个【解析】D:本题考查了空间想象能力∵到三条两垂直的直线距离相等的点在以三条直线为轴,以正方体边长为半径的圆柱面上,∴三个圆柱面有无数个交点,(2010全国卷2文数)(8)已知三棱锥中,底面为边长等于2的等边三角形,垂直于底面,=3,那么直线与平面所成角
11、的正弦值为(A)(B)(C)(D)【解析】D:本题考查了立体几何的线与面、面与面位置关系及直线与平面所成角。ABCSEF过A作AE垂直于BC交BC于E,连结SE,过A作AF垂直于SE交SE于F,连BF,∵正三角形ABC,∴E为BC中点,∵BC⊥AE,SA⊥BC,∴BC⊥面SAE,∴BC⊥AF,AF⊥SE,∴AF⊥面SBC,∵∠ABF为直线AB与面SBC所成角,由正三角形边长3,∴,AS=3,∴SE=,AF=,∴(2010江西理数)10.过正方体的顶点A作直线L,使L与棱,,所成的角都相等,这样的直线L
12、可以作A.1条B.2条C.3条D.4条【答案】D【解析】考查空间感和线线夹角的计算和判断,重点考查学生分类、划归转化的能力。第一类:通过点A位于三条棱之间的直线有一条体对角线AC1,第二类:在图形外部和每条棱的外角和另2条棱夹角相等,有3条,合计4条。(2010安徽文数)(9)一个几何体的三视图如图,该几何体的表面积是(A)372(B)360(C)292(D)2809.B【解析】该几何体由两个长方体组合而成,其表面积等于下面长方体的全面积加上面长方体的4个侧面积之和。.【方法技巧】把三视图转化为直观图
13、是解决问题的关键.又三视图很容易知道是两个长方体的组合体,画出直观图,得出各个棱的长度.把几何体的表面积转化为下面长方体的全面积加上面长方体的4个侧面积之和。(2010重庆文数)(9)到两互相垂直的异面直线的距离相等的点(A)只有1个(B)恰有3个(C)恰有4个(D)有无穷多个解析:放在正方体中研究,显然,线段、EF、FG、GH、HE的中点到两垂直异面直线AB、CD的距离都相等,所以排除A、B、C,选D亦可在四条侧棱上找到四个点到两垂直异面直线AB、CD
此文档下载收益归作者所有