321复数代数形式的加减运算及几何意义

321复数代数形式的加减运算及几何意义

ID:47246560

大小:159.27 KB

页数:13页

时间:2019-08-29

321复数代数形式的加减运算及几何意义_第1页
321复数代数形式的加减运算及几何意义_第2页
321复数代数形式的加减运算及几何意义_第3页
321复数代数形式的加减运算及几何意义_第4页
321复数代数形式的加减运算及几何意义_第5页
资源描述:

《321复数代数形式的加减运算及几何意义》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、§3.2..1复数代数形式的加减运算及几何意义(导学案)预习目标:1、掌握复数代数式的加减运算法则,并能熟练地进行复数代数式形式的加减运算;2、理解并掌握复数加法、减法的几何意义及其应用。预习内容:设Z]=a+bi,z2=c+di(a,b,c,deR)(1)z,+z2=(加法运算法则)(2)若复数%Z2对应的点分别为Z,,Z2,0为坐标原点,贝IJOZ}=,OZ,—,OZ}+OZ,=若旋=+则旋对应的复数为⑶z.+z2的几何意义是(4).z,-z2=(复数减法运算法则)(5)同(2),OZ,-0Z2=;ZZ2对应的复数为IZ/21=JZj-zJ的几何意义是Z[-Z?的几何意义是提出疑惑:同学们

2、,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容课内探究学案学习目标:1:常握复数的加法运算及意义2:理解并掌握实数进行四则运算的规律,了解复数加减法运算的几何意义.学习重点:复数加法运算,复数与从原点出发的向量的对应关系.学习难点:复数加法运算的运算率,复数加减法运算的几何意义。学习过程:例1.计算(1)(l+4z)+(7-2z)(2)(7—20+(1+40(3)[(3-2z)+(-4+3d)]+(5+/)(4)(3-2/)+[(-4+3,)+(5+z)J探究:1•观察上述计算,复数的加法运算是否满足交换、结合律,试给予验证?2.例1中的(1)、(3)两小题,分别标出

3、(l+40,(7-2z),(3-2d),(-4+3i),(5+,)所对应的向量,再画出求和后所对应的向量,看有所发现?例3.计算(1)(1+40-(7-20(2)(5-2z)+(-l+4z)-(2-3z)(3)(3-2。-[(一4+3,)-(5+川当堂检测:1、可=3+4让2=-2-匚则Z[-Z2,Z[+Z?的值为多少?2、计.算(1)(2+4i)+(3—4i)(2)5-(3+2i)(3)(-3-4z)+(2+z)-(l-5z)(4)(2-z)-(2+3z)+4z3、ABCD是复平面内的平行边行,A,B,C三点对应的复数分别是1+3—,2+/,求点D对应的复数课后练习与提高:1.计算(1)(8

4、-4z)+5(2)(5-4z)-3z(3)2+3?(-2-9z)-(V2-zj2.若(3-10/)^4-(2+z)x=1-9z,求实数兀y的取值。变式:若(3-10i)y+(2+i)x表示的点在复平面的左(右)半平面,试求实数d的取值。3.三个复数ZPZ2,ZV其中Z,=V3+Z,Z?是纯虚数,若这三个复数所对应的向量能构成等边三角形,试确定Z?,Z3的值。教学目标:知识与技能:掌握复数的加法运算及意义过程与方法:理解并掌握实数进行四则运算的规律,了解复数加减法运算的几何意义.情感、态度•与价值观:理解并掌握复数的有关概念(复数集、代数形式、虚数、纯虚数、实部、虚部).理解并掌握复数相等的有关

5、概念;画图得到的结论,不能代替论证,然而通过对图形的观察,往往能起到启辿解题思路的作用教学重点:复数加法运算,复数与从原点出发的向量的对应关系.教学难点:复数加法运算的运算率,复数加减法运算的几何意义。教学过程:一.学生探究过程:1.与复数一一对应的有?2.试判断下列复数1+4Z,7-2z;6,-2-0Z,7z,0,0-3/在复平面中落在哪象限?并画出其对应的向量。3.同时用坐标和儿何形式表示复数£,=1+4/-^=7-2/所对应的向量,并计算向量的加减运算满足何种法则?4.类比向量坐标形式的加减运算,复数的加减运算如何?二、讲授新课:1・复数的加法运算及几何意义①•复数的加法法则:Zj=a+

6、bi与Z?=c+di,则Zx+Z2=(c/+c)+(b+d)i。例].计算(1)(1+40+(7-20(2)(7-2/)+(l+4z)(3)[(3-2,)+(-4+3刖+(5+i)(2)(3-2z)+[(-4+3z)+(5+/)]②.观察上述计算,复数的加法运算是否满足交换、结合律,试给予验证。例2.例1中的(1)、(3)两小题,分别标出(1+40,(7_20,(3—20,(-4+3认(5+i)所对应的向量,再画出求和后所对应的向量,看有所发现。③复数加法的儿何意义:复数的加法可以按照向量的加法来进行(满足平行四边形、三角形法则)2.复数的减法及几何意义:类比实数,规定复数的减法运算是加法运算

7、的逆运算,即若Z1+Z=Z2,则Z叫做Z2减去Z]的差,记作Z=Z2-Z,o④讨论:若Z严a+b,Z2=c+di,试确定Z=Z,-Z2是否是一个确定的值?(引导学生用待定系数狂,结合复数的加法运算进行推导,师生一起板演)⑤复数的加法法则及儿何意义:(a+bi)-(c+di)=(a-c)+(h-d)i9复数的减法运算也可以按向量的减法来进行,例3.计算(1)(1+40-(7-2z)(2)(5-2z)

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。