资源描述:
《沈阳市郊联体2018届高三上学期期末考试文科数学试卷含答案》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、2017-2018学年度上学期沈阳市郊联体期末考试高三数学(文)第I卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分•在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合-MF={x
2、xa=x}?7V={j
3、1gx<0>,则)A.MB.C.E)D.(-切_2a-i2.已知复数z一—厂在复平面内对应的点位于直线^-^=°上,则。的值为()11.A.2B.2C.:D.-23.是“直线x十今十6=0和直线@一2刃十芳十勿=°平行”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也
4、不必要条件""是两条不同的直线,且4.设低“是两个不同的平面,Zea,mafl()B.若住丄0,贝I”丄加D.若W贝1”〃加A.若〃",则"0C.若』丄/则@丄°5.已知双曲线/舁S3的焦距为且双曲线的一条渐近线为则双曲线的方程为()22—A.彳16宀£=iB.彳—^-=1C.16彳X221D.彳1=x+lc、bn=—6•数列佃}满足%4(处皿),数列他}满足”“口妬4■知+…+為=45,则占占5()C.为定A.最大值为100B.最大值为25值24D.最大值为50mn=—/(x)=ix3+n2x7•已知正数曲/满足2,
5、则曲线3在点佃/佃))处的切线的倾斜角的取值范围为()A.B.[誇C.rr2tr[3D.[訐)8•如图,在边长为1的正方形网格中用粗线画出了某个多面体的三视图,则该多面体的体积为()A.15B.13C.12D.99•已知椭圆G臣4■歹的左、右顶点分别为儿岛,且以线段也为直径的圆与直线加-少+如皿相切,则C的离心率为()A.B.3C.4D.10.已知在三棱锥S-.4BC中,ABLAC11.已知抛物线丿线于儿B两点,(=4jr的焦点为F,过点F的直线血交抛物交准线于点G若I毗1=引3冋,贝,J
6、ZB
7、=A.)103"16B
8、.T12.C.3已知函数e)满足工,当施山勺时,D.5斟=3,AB=AC=2,则此三棱锥外接球的表面积为()B.4*A.35”内,函数sw=rw-«有三个不)/V)=ln工,若在区间同的零点,则实数4的取值范围是([乎3時)A.4gB.滋[孚丄)D.4g第II卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13•已知直线%与直线^:4*-3/+1=0垂直,且与圆<7:^+/+^-3=0相切,则直线/的一般方程为・14•已知/3)是定义在尺上的奇函数,当才巩-叫。)时,f{x)=-^+2x则/'00=
9、.21二一厶=血>0上>0)15.已知双曲线«b的左、右焦点分别为阳场,过幷且与、轴垂直的直线交双曲线于儿已两点,线段必与双曲线的另一交点为若S3C=4Sg,则双曲线的离心率为・呂丄116•已知椭圆16?的右焦点为卩,P是椭圆上一点,点越03石),当3F的周长最大时,AAPF的面积三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在A4BC中,内角儿的边长分别为且c=2.(2)若(1)若6=3,求ginC的值;sinAcos1—+sinj,且辺卍的面积is.已知三棱柱应c-aqq的侧
10、棱垂直于底面,卩为血的中占I八、、•(1)求证:g"平面A";(2)若如匸3,曲丄胆,且血二M=求点P到平面召眈的距离.19.已知抛物线G,=2四上一点“⑴片)到其焦点F的距离为4,椭圆G各討心刈的离心率且过抛物线的焦点F.(1)求抛物线4和椭圆G的标准方程;(2)过点戸的直线Z交抛物线G于A*两不同点,交丿轴于点N,已知就"丽,加〃丽,求证:""为定值.—y4—=l(fi>Z>>0)—20.已知椭圆G’h2f'的焦点好的坐标为pn2)(pQ,马的坐标为G°),且经过点P,略丄次轴.(1)求椭圆住的方程;(2)设过人的
11、直线?与椭圆卍交于人“两不同点,在椭圆亡上是否存在一点M,使四边形如马为平行四边形?若存在,求出直线/的方程;若不存在,说明理由.21.设函数/■⑴訥jf+1#-討一益一1,已知曲线尸『(刃在"0处的切线/的方程为尸占+化且空,(1)求皿的取值范围;(2)当2-2时,〃沦0,求皿的最大值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22•选修4-4:坐标系与参数方程J2/?cch(0+-—)=4已知直线/的极坐标方程是4,以极点为原点,极轴为'轴的正半轴建立极坐标系,曲线©的参数方程jx=2c
12、osa为b=(。为参数).(1)写出直线<的普通方程与曲线匸的直角坐标方程;(2)设为曲线C上任意一点,求的最小值.23.选修4-5:不等式选讲设函数4)十-引.(1)当。=一1时,解不等式;(2)若/W2的解集为LB,m+2n=2/fin-3a(«>□»»>0)求证:加+勿二6试卷答案选择题(本大题共12小题,每小题5分,计60