欢迎来到天天文库
浏览记录
ID:47216151
大小:237.57 KB
页数:19页
时间:2019-08-27
《广东省中山市普通高中学校2018届高三数学1月月考试题03201803271131》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、2018高考高三数学1月月考试题03满分150分,考试时间120分钟.第【卷(选择题共50分)一.选择题:本大题共10小题,每小题5分,共50分.在每小题所给的四个答案中有且只有一个答案是正确的.1.已知全集U=R,集合^={x
2、
3、x
4、<3},B={兀
5、x-2>0},则AjCb!B等于()A.(-oo,31B.(—汽3)C.[2,3)D.(—3,2]工22.双曲线—-/=1的渐近线方程为(4D.尸±卜3.某雷达测速区规定:凡车速大于或等于80km/h的汽车视为“超速”,A.y=±2xB.y=±4xC.y=±-x2并将受到处罚.得结果的频率分布
6、直方图,则从图屮可以看出被处罚的汽午大约有(A.20辆B.40辆C.60辆D.80辆4.P>/”是log2a>log2b的()A.充分不必要条件C.充要条件B.必要不充分条件D.既不充分也不必耍条件5.函数/(x)=x4-sinx(xgR)()A.是偶函数且为减函数B.是偶函数且为增函数C.是奇函数且为减函数D.是奇函数且为增函数6.若不等式组b>0,表示的平面区域为不等式y>x2表示的平面区域为N,x<现随机向区域M内投掷一粒豆子,则豆子落在区域N内的概率为()A.-B.-C.-D.-63237.甲、乙两人进行乒乓球比赛,比赛采取五局三胜制
7、,无论哪一方先胜三局则比赛结束,假2定甲每局比赛获胜的概率均为丁则甲以3:1的比分获胜的概率为86448Ap「一n—278199&在右侧程序框图屮,输入/?=5,按程序运行后输出的结果是()9.若函数/(%)=X3-3%在(°,6-/)上有最小值,则实数g的取值范围是()D.(—2,1)A.(-75,1)B.[-x/5,1)C.[-2,1)10.ABC中,BC=29A=453为锐角,点0是MBC外接圆的圆心,则鬲•茕的取值范围是()A.(-2,2^2]B.(-2^2,2]C.[-272,2^2]第II卷(非选择题共100分)二.填空题:本大
8、题共5小题,每小题4分,满分20分。11.若(a-if为纯虚数(/为虚数单位),则实数Q二•兀312.己知sin(—-%)=—,则cos2x=.2513.一个几何体的三视图如图所示,其中正视图是等边三角形,俯视图是半圆。现有一只蚂蚁从点A出发沿该几何体的侧面环绕一周回到A点,则蚂蚁所经过路程的最小值为・側视图14.在含有3件次品的10件产晶屮,取出n(n9、x冲+2x斗—丄;c;C:瞬10当n=3时,「0厂3厂1厂2「2厂1厂3厂0q£A=0xC37+1xC3;7+2x5J+3x5;7=C;o%C,3010观察以上结果,可以推测:若在含有M件次品的N件产品中,取出ngN/wN、件产品,记©表示取出的次品数,则E©二.15.某同学在研究函数/(x)=Vx2+1+V%2-6x4-10的性质时,受到两点I'可距离公式的启发,将/(对变形为/(x)=J(x_0)2+(0_1)2+仏_3)2+(0+1)2,则/(X)表示PA+PB(如图),下列关于函数/(x)的描述正确的是•(填上所有正确结论的序号10、)①/(x)的图彖是中心对称图形;②/(x)的图象是轴对称图形;A(o,i)③函数/⑴的值域为[加,4-00);④方程f/(%)]=i+Vio有两个解.三、0解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步16.(本小题满分13分)已知函数/(x)=Tsin^+lcos^(">0)的周期为4。(I)求/(X)的解析式;2(II)将/(%)的图象沿x轴向右平移兰个单位得到函数g(x)的图象,〃⑶・1)P:骤P、0分别为函数gd)图象的最髙点和最低点(如图),求ZOQP的大小。如图,PA,QC都与正方形ABCD所在平而11、垂直,AB二PA=2QC=2,ACABD=O(I)求证:OP丄平面QBD;(II)求二面角P-BQ-D平面角的余弦值;PF(III)过点C与平面PBQ平行的平面交PD于点E,求丝的值.ED18.(本小题满分13分)某城市2002年有人口200万,该年医疗费用投入10亿元。此后该城市每年新增人口10万,医疗费用投入每年新增兀亿元。已知2012年该城市医疗费用人均投入1000元。(I)求兀的值;(II)预计该城市从2013年起,每年人口增长率为10%。为加大医疗改革力度,要求将来10年医疗费用禺段△达到690亿元,若医疗费用人均投入每年新增尹元,求12、y的值。(参考数据:1.1"=2.85)19.(本小题满分13分)已知函数f(x)=x-^ax在兀=1处的切线/与直线x+2y=0垂直,函数12g
9、x冲+2x斗—丄;c;C:瞬10当n=3时,「0厂3厂1厂2「2厂1厂3厂0q£A=0xC37+1xC3;7+2x5J+3x5;7=C;o%C,3010观察以上结果,可以推测:若在含有M件次品的N件产品中,取出ngN/wN、件产品,记©表示取出的次品数,则E©二.15.某同学在研究函数/(x)=Vx2+1+V%2-6x4-10的性质时,受到两点I'可距离公式的启发,将/(对变形为/(x)=J(x_0)2+(0_1)2+仏_3)2+(0+1)2,则/(X)表示PA+PB(如图),下列关于函数/(x)的描述正确的是•(填上所有正确结论的序号
10、)①/(x)的图彖是中心对称图形;②/(x)的图象是轴对称图形;A(o,i)③函数/⑴的值域为[加,4-00);④方程f/(%)]=i+Vio有两个解.三、0解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步16.(本小题满分13分)已知函数/(x)=Tsin^+lcos^(">0)的周期为4。(I)求/(X)的解析式;2(II)将/(%)的图象沿x轴向右平移兰个单位得到函数g(x)的图象,〃⑶・1)P:骤P、0分别为函数gd)图象的最髙点和最低点(如图),求ZOQP的大小。如图,PA,QC都与正方形ABCD所在平而
11、垂直,AB二PA=2QC=2,ACABD=O(I)求证:OP丄平面QBD;(II)求二面角P-BQ-D平面角的余弦值;PF(III)过点C与平面PBQ平行的平面交PD于点E,求丝的值.ED18.(本小题满分13分)某城市2002年有人口200万,该年医疗费用投入10亿元。此后该城市每年新增人口10万,医疗费用投入每年新增兀亿元。已知2012年该城市医疗费用人均投入1000元。(I)求兀的值;(II)预计该城市从2013年起,每年人口增长率为10%。为加大医疗改革力度,要求将来10年医疗费用禺段△达到690亿元,若医疗费用人均投入每年新增尹元,求
12、y的值。(参考数据:1.1"=2.85)19.(本小题满分13分)已知函数f(x)=x-^ax在兀=1处的切线/与直线x+2y=0垂直,函数12g
此文档下载收益归作者所有