欢迎来到天天文库
浏览记录
ID:47100234
大小:455.85 KB
页数:12页
时间:2019-08-02
《高一数与式地运算》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、实用文档1.1数与式的运算1.1.1.绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离.两个数的差的绝对值的几何意义:表示在数轴上,数和数之间的距离.例1解不等式:>4.解法一:由,得;由,得;①若,不等式可变为,即>4,解得x<0,又x<1,∴x<0;②若,不等式可变为,即1>4,∴不存在满足条件的x;③若,不等式可变为,即>4,解得x>4.又x≥3,∴x>4.综上所述,原不等式的解为x<0,或x>4.文案大全实用文档13ABx04CDxP
2、x
3、-1
4、
5、x-3
6、图1.1-1解法二:如图1.1-1,表示x轴上坐标为x的点P到坐标为1的点A之间的距离
7、PA
8、,即
9、PA
10、=
11、x-1
12、;
13、x-3
14、表示x轴上点P到坐标为2的点B之间的距离
15、PB
16、,即
17、PB
18、=
19、x-3
20、.所以,不等式>4的几何意义即为
21、PA
22、+
23、PB
24、>4.由
25、AB
26、=2,可知点P在点C(坐标为0)的左侧、或点P在点D(坐标为4)的右侧.x<0,或x>4.练习1.填空:(1)若,则x=_________;若,则x=_________.(2)如果,且,则b=________;若,则c=________.2.选择题:下列叙述正确的是()(A)
27、若,则(B)若,则(C)若,则(D)若,则3.化简:
28、x-5
29、-
30、2x-13
31、(x>5).文案大全实用文档1.1.2.乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式;(2)完全平方公式.我们还可以通过证明得到下列一些乘法公式:(1)立方和公式;(2)立方差公式;(3)三数和平方公式;(4)两数和立方公式;文案大全实用文档(5)两数差立方公式.对上面列出的五个公式,有兴趣的同学可以自己去证明.例1计算:.解法一:原式===.解法二:原式===.例2已知,,求的值.解:.练习1.填空:(1)();(2);(3) .2.选择题:(1)若是一个
32、完全平方式,则等于()(A)(B)(C)(D)(2)不论,为何实数,的值()(A)总是正数(B)总是负数(C)可以是零(D)可以是正数也可以是负数文案大全实用文档1.1.3.二次根式一般地,形如的代数式叫做二次根式.根号下含有字母、且不能够开得尽方的式子称为无理式.例如,等是无理式,而,,等是有理式.1.分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式,例如与,与,与,与,等等.一般地,与,与,与
33、互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,运算中要运用公式;而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式.2.二次根式的意义例1将下列式子化为最简二次根式:(1);(2);(3).解:(1);(2);(3).例2 计算:.文案大全实用文档解法一:= =
34、= = =.解法二:=====.例3试比较下列各组数的大小:(1)和;(2)和.解:(1)∵,,又,∴<.(2)∵又4>2,∴+4>+2,∴<.例4 化简:.解:文案大全实用文档 == ==.例5化简:(1);(2).解:(1)原式.(2)原式=,∵,∴,所以,原式=.例6已知,求的值. 解: ∵,, ∴.练习1.填空:(1)=_____;(2)若,则的取值范围是_____;(3)_____;(4)若,则________.2.选择题:等式成立的条件是( )文案大全实用文档(A) (B) (C) (D)3.若,求的值
35、.4.比较大小:2--(填“>”,或“<”).1.1.4.分式1.分式的意义形如的式子,若B中含有字母,且,则称为分式.当M≠0时,分式具有下列性质:;.上述性质被称为分式的基本性质. 2.繁分式文案大全实用文档像,这样,分子或分母中又含有分式的分式叫做繁分式.例1 若,求常数的值.解:∵, ∴解得.例2 (1)试证:(其中n是正整数);(2)计算:;(3)证明:对任意大于1的正整数n,有.(1)证明:∵,∴(其中n是正整数)成立.(2)解:由(1)可知=.(3)证明:∵==,又n≥2,且n是正整数,∴一定为正数,∴<.例3 设,且e>1,2c2-5a
36、c+2a2=0,求e的值.解:在2c2-5ac+2a2=0两边同除以a2,得文案
此文档下载收益归作者所有