北京化工大学测控现代控制理论实验报告材料

北京化工大学测控现代控制理论实验报告材料

ID:47048181

大小:362.21 KB

页数:20页

时间:2019-07-08

北京化工大学测控现代控制理论实验报告材料_第1页
北京化工大学测控现代控制理论实验报告材料_第2页
北京化工大学测控现代控制理论实验报告材料_第3页
北京化工大学测控现代控制理论实验报告材料_第4页
北京化工大学测控现代控制理论实验报告材料_第5页
资源描述:

《北京化工大学测控现代控制理论实验报告材料》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、实用文档实验八状态反馈与状态观测器的工程应用一、实验目的1、对一个实际系统,建立该系统的数学模型,了解模型线性化的方法,最终获得系统的状态空间描述,并对系统进行稳定性,能控性,能观性检查。2、根据控制要求,采用极点配置方法设计状态反馈控制器,并利用全维状态观测器来实现状态反馈。二、实验要求1、对实验系统进行稳定性,能控性及能观性检查2、用状态反馈方法使起重机系统按期望速度到达B点3、全维状态观测器的设计4、观测器的引入对闭环系统的影响三、实验内容为研究起重机的防摆控制问题,需对实际问题进行简化、抽象。起重机的“搬运—行走—定位”过程可以抽象为如图2.1所示的情

2、况,即起重机在受到外力F作用下,能够在较短时间内从A点运动到B点,且摆角不超过系统允许的最小摆角。图中m是重物的质量(kg);m0为起重机的质量(kg),g为重力加速度(m/s2),F为小车受到水平方向上的拉力(N),l为绳长,此处假设绳长保持不变。考虑到实际起重机运行过程中摆角较小(不超过10o),且平衡位置θ=0,因此在sinθ≈θ,cosθ≈1,θ2sinθ≈0的近似条件下的起重机系统的简化模型如图2.2所示图2.1起重机受力分析过程图2.2起重机系统的简化模型选取小车的位移x及其速度x&,摆的角位移θ及角速度θ作为状态变量,x文案大全实用文档为输出变量

3、。假设系统参数为m0=50kg,m=5kg,l=1m,g=9.8m/s2,则可以列出起重机系统的状态空间表达形式。由此模型可知,拉力F为输入变量,所以对于此系统,G(s)==利用MatLab可从传递函数中由G(S)求出状态方程的A,B,C,D>>num=[0109.8];den=[50053900]den=50053900>>[A,B,C,D]=tf2ss(num,den)A=0-10.7800001.000000001.000000001.00000B=1文案大全实用文档000C=00.020000.1960D=0(1)判断系统稳定性建立m文件,命名为Unt

4、iled2,程序:lambda=eig(A);fori=1:length(lambda)iflambda(i)>=0disp('Thesystemisunstable');returnendenddisp('Thesystemisstable');运行结果为:>>Untitled2Thesystemisunstable所以这个系统是不稳定的。文案大全实用文档(2)判断系统的能控性或能观性建立m文件,命名为Untiled3,n=length(A);Qc=[B];Qo=[C];fori=1:n-1Qc=[QcA^(i)*B];Qo=[Qo;C*A^(i)];end

5、ifrank(Qc)==ndisp('thesystemisconctrollable');elsedisp('thesystemisunconctrollable');endifrank(Qo)==ndisp('thesystemisobservable');elsedisp('thesystemisdisobservable');end运行结果为:>>Untitled3thesystemisconctrollablethesystemisobservable所以起重机系统能控能观。(3)极点配置建立m文件,命名为pole_assignment程序如下:fu

6、nctionK=pole_assignment(A,B,lambda)n=length(A);JA=poly(A);JJA=poly(lambda);文案大全实用文档Q=[B];fori=1:n-1Q=[A^(i)*BQ];endT=zeros(n,n);fori=1:nT=T+sparse(i:n,1:n-i+1,JA(i)*ones(1,n-i+1),n,n);endP=Q*T;K=(JJA(n+1:-1:2)-JA(n+1:-1:2))*(inv(P));并根据系统要求,在Command窗口中输入:>>lambda=[-1+sqrt(3)*j-1-sqr

7、t(3)*j-6-6];>>K=pole_assignment(A,B,lambda)得到结果:K=14.000053.2200120.0000144.0000构造状态反馈控制律为u=v-kx,其中K=[K1K2K3K4]分别是状态x,x&,q,q&反馈至v的增益,使得系统极点配置到期望位置。给定起重机初始条件:偏离角度q(0)=0.6弧度,q&(0)=0,z(0)=0,z&(0)=0,时,采用Simulink对起重机的反馈控制系统进行仿真验证,绘出反馈控制系统的状态响应曲线,观察其能否返回到参考位置(q(0)=0,z(0)=0)以及响应速度是否符合设计要求。

8、搭建Simulink仿真模型文案大全实

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。