欢迎来到天天文库
浏览记录
ID:47023124
大小:569.01 KB
页数:7页
时间:2019-06-27
《江苏省徐州市2017-2018学年高二下学期数学(理)期末试卷含答案》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、www.ks5u.com江苏省徐州市2017~2018学年第二学期期末试卷高二数学(理)2018.6注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本卷共4页,包含填空题(第1题-第14题)、解答题(第15题-第20题).本卷满分160分,考试时间为120分钟.考试结束后,请将答题卡交回.2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在答题卡的规定位置.3.请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.4.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.5.请
2、保持答题卡卡面清洁,不要折叠、破损.一律不准使用胶带纸、修正液、可擦洗的圆珠笔.一、填空题(本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请将答案填写在答题卡相应的位置上.)1.已知复数z=3﹣i(i是虚数单位),则的值为.2.用反证法证明命题“如果0<x<y,那么”时,应假设.3.若随机变量X的概率分布列为P(X=k)=,k=1,2,3,则P(X≤2)=.4.若,则n的值为.5.在极坐标系中,已知两点P(2,),Q(,),则线段PQ的长度为.6.若随机变量X~B(5,),且Y=4X﹣3,则随机变量Y的方差V(Y)的值为.7.观察下列等式:23﹣13=3×2×1+1,33﹣23
3、=3×3×2+1,43﹣33=3×4×3+1,53﹣43=3×5×4+1,…,照此规律,第n(n)个等式可以为“(n+1)3﹣n3=”.8.将数字“34396”重新排列后得到不同的奇数的个数为.9.矩阵A=的逆矩阵为.10.在求的值时,采用了如下的方式:“令,则,解得,即”.用类比的方法可以求得的值为.11.数字除以100的余数为.12.在的展开式中,含x的项的系数为(用数字作答).13.如图,将标号为1,2,3,4,5的五块区域染上红、黄、绿三种颜色中的一种,使得相邻区域(有公共边)的颜色不同,则不同的染色方法有种.14.若(xR),则的值为.二、解答题(本大题共6小题,共计90分.请在答题
4、纸指定区域内作答,解答应写出文字说明,证明过程或演算步骤.)15.(本题满分14分)已知矩阵A=属于特征值的一个特征向量为=.(1)求实数k,的值;(2)若曲线C在矩阵A对应的变换作用下,得到的曲线C′的方程为,求曲线C的方程.16.(本题满分14分)已知在的展开式中,只有第5项的二项式系数最大.(1)求含的项的系数;(2)求展开式中所有的有理项.17.(本题满分14分)某班要从6名男生4名女生中选出5人担任5门不同学科的课代表,请分别求出满足下列条件的方法种数(结果用数字作答).(1)所安排的男生人数不少于女生人数;(2)男生甲必须是课代表,但不能担任语文课代表;(3)女生乙必须担任数学课代
5、表,且男生甲必须担任课代表,但不能担任语文课代表.18.(本题满分16分)在平面直角坐标系xOy中,直线l的参数方程为(t为参数,为倾斜角),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为.(1)求曲线C的直角坐标方程;(2)若直线l与曲线C交于A,B两点,且AB=,求直线l的直角坐标方程.19.(本题满分16分)支付宝作为一款移动支付工具,在日常生活中起到了重要的作用.(1)通过现场调查12位市民得知,其中有10人使用支付宝.现从这12位市民中随机抽取3人,求至少抽到2位使用支付宝的市民的概率;(2)为了鼓励市民使用支付宝,支付宝推出了“奖励金”活动,每使用支付宝支付一
6、次,分别有,,的概率获得0.1,0.2,0.3元奖励金,每次支付获得的奖励金情况互不影响.若某位市民在一天内使用了2次支付宝,记X为这一天他获得的奖励金数,求X的概率分布和数学期望.20.(本题满分16分)已知,,其中,且.(1)若,求n的值;(2)对于每一个给定的正整数n(n≥2),求关于x的方程+=0所有解的集合.参考答案1.2.3.4.2或55.46.157.8.369.10.411.4112.5413.3014.403715.(1)实数k的值为3,的值为2;(2).16.(1)含的项的系数为﹣16;(2)展开式中的有理项为:1120,﹣16x2.17.(1)(2)(3)18.(1);(
7、2)或.19.(1)至少抽到2位使用支付宝的市民的概率为.(2)X的概率分布如下:X0.20.30.40.50.6PEX=0.2×+0.3×+0.4×+0.5×+0.6×=.20.
此文档下载收益归作者所有