正、反比例函数的内容特点及教材分析

正、反比例函数的内容特点及教材分析

ID:47023032

大小:167.50 KB

页数:10页

时间:2019-06-27

正、反比例函数的内容特点及教材分析_第1页
正、反比例函数的内容特点及教材分析_第2页
正、反比例函数的内容特点及教材分析_第3页
正、反比例函数的内容特点及教材分析_第4页
正、反比例函数的内容特点及教材分析_第5页
正、反比例函数的内容特点及教材分析_第6页
正、反比例函数的内容特点及教材分析_第7页
正、反比例函数的内容特点及教材分析_第8页
正、反比例函数的内容特点及教材分析_第9页
正、反比例函数的内容特点及教材分析_第10页
资源描述:

《正、反比例函数的内容特点及教材分析》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、正、反比例函数的内容特点及教材分析第一部分:初中函数内容的知识框架结构1.函数在初中数学知识体系中的地位和作用函数是初中数学中的重要内容之一,它是从现实世界中抽象出来的,是从数量关系的角度刻画事物运动变化规律的工具。函数知识渗透在初中数学的许多内容中,它又与物理、化学等学科知识密切相关。同时函数本身也是一种重要的数学思想,运用函数的思想和方法,可以加深对一些代数问题的理解。2.初中学习函数的意义和要求初中学习函数的意义是初步感受现实世界中除了确定的一些量——常量外,还有不少的量——变量,初步知道两个变量之间存在的关系,能利用

2、这些关系来研究它们之间的一些基本性质。初中学习函数的要求是理解函数的意义,理解正比例函数、反比例函数、一次函数和二次函数的概念,能画出它们的图像,并根据图像知道它们的一些基本性质。3.教材内容安排的方式及要求所体现的思想函数内容在初中教材中主要分布在八年级和九年级中,八年级第一学期学习函数的概念,研究两个最简单的函数——正比例函数和反比例函数的有关图像和性质;八年级第二学期学习一次函数的有关图像和性质;九年级第一学期学习二次函数的有关图像和性质,九年级第二学期在拓展II中进一步对二次函数进行深入的研究。这样首先出示基本概念,

3、然后由易到难研究一些特殊函数的编排方式符合学生的认知规律,帮助学生充分理解函数的基本思想。4.高中函数教学的介绍课程标准中指出:在初中学习函数的基础上,进一步理解函数是变量之间相互依赖关系的反映;学习用集合与对应的语言刻画函数,再从直观到解析、从具体到抽象,研究函数的性质,并能从解析的角度理解有关性质。函数的基本知识是高中数学的核心内容之一,函数的思想和方法贯穿于高中数学。第二部分:函数知识内容的教学研究(一)函数内容的知识体系初中学习函数主要是让学生对函数有一个初步的认识,知道生活中的变量关系,能用函数的思想处理一些简单的

4、问题,因此初中函数内容的知识体系是,先介绍函数的概念,然后以两个最简单的函数(正比例函数和反比例函数)作为载体,让学生理解函数的图像与一些性质,再介绍函数常用的三种表示方法,最后再分别研究现实生活中经常遇到的另外两个简单而常用的函数(一次函数和二次函数),使学生对函数有一个较完整的理解,并能进行简单的应用。(二)函数内容的教材分析及教学注意事项1.函数的相关概念教材分析及教学注意事项(1)函数相关内容的概念框架与知识结构函数的定义域实际问题---变量与常量---函数---函数值函数的表示法(2)函数相关内容的教学目标、教学重

5、点及教学难点分析通过身边的事例和生活中的实例,直观地认识变量以及变量之间的相互依赖关系,体会函数的意义,以及函数的三种常用的表示方法和数形结合的思想。教学目标:①通过实例认识变量与常量,理解变量之间的相互依赖关系,能用运动、变化的观点看待相关数量问题,能从两个变量之间相互联系、相互依赖的角度理解函数的意义。②知道函数的定义域、函数值等概念,知道符号“y=f(x)”的意义,会根据函数解析式和实际意义求函数的定义域,初步理解自变量的值与函数值之间的对应关系,会根据函数解析式求函数值。③知道函数的三种表示方法,以及它们的优势与不足

6、,知道函数图像的意义,能借助函数图像的直观性,用语言描述函数的基本性质,体会数形结合思想。重点难点:理解函数的概念,知道符号“y=f(x)”的意义,会求函数的定义域,能借助图像认识函数的一些基本性质。(3)教材分析教材分析:①变量、常量通过有关长度的数量关系的实例引入,能使学生更容易理解。②变量、常量是相对的,是要结合实际问题具体分析,比如在行程问题中的三个量,路程S、速度v和时间t,在匀速运动时存在这样的关系:S=vt,如果假定速度v不变,那么路程S就随时间t的变化而变化,S和t就是变量,v就是常量;如果假定路程S不变,那

7、么时间t就随速度v的变化而变化,v和t就是变量,S是常量。③例题1通过摄氏度与华氏度的转化,揭示这两个变量之间存在相互依赖的关系,并且这种相互依赖的关系能够用等式——函数解析式表示出来,注意“边款语”,与的一致性,即它们所表示的两个变量之间的依赖关系是完全一样的。④例题2主要通过图像、表格的形式表示两个变量之间的相互依赖关系,为进一步学习函数的表示方法做准备。此处还要让学生理解函数图像与学生原有的生活经验的一致性,看得懂函数图表中两个变量之间的相互依赖关系。⑤通过取数字填表操作,使学生理解自变量的取值是有要求的,这个要求就是

8、函数的定义域,每一个函数都有定义域,对于用解析式表示的函数,如果不加说明,那么这个函数的定义域就是使这个函数解析式有意义的一切实数,在初中阶段,我们主要考虑两个方面的问题:分式的分母不能为零,偶次根式的被开方数非负。例题3就是说明如何根据解析式来求定义域⑥例题4主要说明如何求函数的解析式和

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。