欢迎来到天天文库
浏览记录
ID:47022396
大小:1.72 MB
页数:15页
时间:2019-06-25
《专题7.2 二元一次不等式(组)与简单的线性规划-3年高考2年模拟1年原创备战2017高考精品系列之数学(理)(原卷版)》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、第七章不等式专题2二元一次不等式(组)与简单的线性规划问题(理科)【三年高考】1.【2016年高考北京理数】若,满足,则的最大值为()A.0B.3C.4D.52.【2016高考浙江理数】在平面上,过点P作直线l的垂线所得的垂足称为点P在直线l上的投影.由区域中的点在直线x+y2=0上的投影构成的线段记为AB,则│AB│=()A.2B.4C.3D.3.【2016年高考四川理数】设p:实数x,y满足,q:实数x,y满足则p是q的()(A)必要不充分条件(B)充分不必要条件(C)充要条件(D)既不充分也不必要条件名师解读,权威剖析,独家奉献,打造不一样的高考!4.【20
2、16高考江苏卷】已知实数满足,则的取值范围是▲.5.【2016高考新课标1卷】某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时.生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.6.【2015高考山东,理6】已知满足约束条件,若的最大值为4,则()(A)3(B)2(C)-2(D)-37.【2015高考新
3、课标1,理15】若满足约束条件,则的最大值为.8.【2015高考陕西,理10】某企业生产甲、乙两种产品均需用A,B两种原料.已知生产1吨每种产品需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为()A.12万元B.16万元C.17万元D.18万元甲乙原料限额(吨)[来源:学科网](吨)[来源:学科网]9.【2015高考浙江,理14】若实数满足,则的最小值是.10.【2014高考安徽卷理第5题】满足约束条件,若取得最大值的最优解不唯一,则实数的值为()A,B.C.2或1D.名师解读,权威剖析,独家奉献
4、,打造不一样的高考!11.【2014山东高考理第9题】已知满足约束条件,当目标函数在该约束条件下取到最小值时,的最小值为()A.5B.4C.D.212.【2014浙江高考理第13题】当实数,满足时,恒成立,则实数的取值范围是________.【三年高考命题回顾】纵观前三年各地高考试题,对二元一次不等式(组)与线性规划及简单应用这部分的考查,主要考查二元一次不等式(组)表示的平面区域、目标函数的最优解问题、与最优解相关的参数问题,高考中一般会以选填题形式考查.从近几年高考试题来看,试题难度较低,属于中低档试题,一般放在选择题的第5-7题或填空题的前两位.【2017年
5、高考复习建议与高考命题预测】由前三年的高考命题形式可以看出,二元一次不等式(组)表示的平面区域(的面积),求目标函数的最值,线性规划的应用问题等是高考的热点,题型既有选择题,也有填空题,难度为中、低档题.主要考查平面区域的画法,目标函数最值的求法,以及在取得最值时参数的取值范围.同时注重考查等价转化、数形结合思想.对二元一次不等式(组)表示的平面区域的考查,关键明确二元等式表示直线或曲线,而二元不等式表示直线或曲线一侧的平面区域,以小题形式出现.对目标函数的最优解问题的考查,首先要正确画出可行域,明确目标函数的几何意义,以小题形式出现.对与最优解相关的参数问题,在
6、近几年的高考中频频出现,并且题型有所变化,体现“活”“变”“新”等特点,在备考中予以特别关注,但对简单线性规划的应用的考查,不但具有连续性,而且其题型规律易于把握.故预测2017年高考仍将以目标函数的最值,特别是含参数的线性规划问题,线性规划的综合运用是主要考查点,重点考查学生分析问题、解决问题的能力.【2017年高考考点定位】名师解读,权威剖析,独家奉献,打造不一样的高考!高考对二元一次不等式(组)与线性规划及简单应用的考查有以下几种主要形式:一是不等式(组)表示的平面区域;二是线性目标函数最优解问题;三是非线性目标函数最优解问题;四是线性规划与其他知识的交汇.
7、【考点1】不等式(组)表示的平面区域【备考知识梳理】二元一次不等式所表示的平面区域:在平面直角坐标系中,直线将平面分成两部分,平面内的点分为三类:①直线上的点(x,y)的坐标满足:;②直线一侧的平面区域内的点(x,y)的坐标满足:;③直线另一侧的平面区域内的点(x,y)的坐标满足:.即二元一次不等式或在平面直角坐标系中表示直线的某一侧所有点组成的平面区域,直线叫做这两个区域的边界,(虚线表示区域不包括边界直线,实线表示区域包括边界直线).由几个不等式组成的不等式组所表示的平面区域,是各个不等式所表示的平面区域的公共部分.【规律方法技巧】由几个不等式组成的不等式组所
8、表示的平面
此文档下载收益归作者所有