欢迎来到天天文库
浏览记录
ID:47020073
大小:191.00 KB
页数:12页
时间:2019-05-12
《如何求定义域、值域》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、南通市天星湖中学2013.1高一数学期末复习(2)-----函数的概念与表示方法函数的定义域与值域及解析式一、知识梳理:1.函数的基本概念(1)函数的定义:设A,B是两个非空的,如果按照某种对应法则f,使对于集合A中的每一个元素x,在集合B中都有的元素y和它对应,那么这样的对应叫做从A到B的一个函数,记作.(2)函数的三要素:、和.(3)相等函数:如果两个函数的和完全一致,则这两个函数相等,这是判断两函数相等的依据.2.函数的表示法有:、、.3.映射的概念:设A、B是两个非空集合,如果按某一种对应法则f,对于A中的每一个元素,在B中都有确定的元素与之对应,那么这样的单值对应叫做集合A到集
2、合B的.4.函数与映射的关系由映射的定义可以看出,映射是概念的推广,函数是一种特殊的映射,要注意构成函数的两个集合A,B必须是非空数集.5.函数的定义域:(1)在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的;(2)求定义域的步骤①写出使函数式有意义的不等式(组);②解不等式组;③写出函数定义域.(注意用区间或集合的形式写出)(3)常见基本初等函数的定义域①分式函数中分母不等于零.②偶次根式函数、被开方式大于或等于0.③一次函数、二次函数的定义域为④y=ax(a>0且a≠1),y=sinx,y=cosx,定义域均为.⑤y=tanx的定义域为.⑥函数f(x)=x0的定义
3、域为.6.函数的值域(1)在函数y=f(x)中,与自变量x的值相对应的y的值叫函数值,函数值的集合叫函数的值域.-12-南通市天星湖中学2013.1(2)基本初等函数的值域①y=kx+b(k≠0)的值域是.②y=ax2+bx+c(a≠0)的值域是:当a>0时,值域为;当a<0时,值域为.③y=(k≠0)的值域是.④y=ax(a>0且a≠1)的值域是.⑤y=logax(a>0且a≠1)的值域是.⑥y=sinx,y=cosx的值域是.⑦y=tanx的值域是.(3)函数值域的求法:①利用函数的单调性②利用配方法:形如型,用此种方法,注意自变量x的范围.③利用三角函数的有界性,如.④利用“分离常
4、数”法:形如y=或(a,c至少有一个不为零)的函数,求其值域可用此法.⑤利用换元法:形如型,可用此法求其值域.7.函数解析式的求法(1)换元法:若已知f(g(x))的表达式,求f(x)的解析式,通常是令g(x)=t,从中解出x=φ(t),再将g(x)、x代入已知解析式求得f(t)的解析式,即得函数f(x)的解析式,这种方法叫做换元法,需注意新设变量“t”的范围.(2)待定系数法:若已知函数类型,可设出所求函数的解析式,然后利用已知条件列方程(组),再求系数.(3)消去法:若所给解析式中含有f(x)、f或f(x)、f(-x)等形式,可构造另一个方程,通过解方程组得到f(x).(4)配凑法或
5、赋值法:依据题目特征,能够由一般到特殊或由特殊到一般寻求普遍规律,求出解析式.-12-南通市天星湖中学2013.1二、自我检测1.有以下判断:(1)f(x)=与g(x)=表示同一函数;(2)函数y=f(x)的图象与直线x=1的交点最多有1个;(3)f(x)=x2-2x+1与g(t)=t2-2t+1是同一函数;(4)若f(x)=
6、x-1
7、-
8、x
9、,则f=0.其中正确判断的序号是________.2.试判断以下各组函数是否表示同一函数:(1)y=1,y=x0;(2)y=·,y=;(3)y=x,y=;(4)y=
10、x
11、,y=()2.3.(1)已知a,b为两个不相等的实数,集合M={a2-4a,-
12、1},N={b2-4b+1,-2},f:x→x表示把M中的元素x映射到集合N中仍为x,则a+b=________.(2)已知映射f:A→B.其中A=B=R,对应法则f:x→y=-x2+2x,对于实数k∈B,在集合A中不存在元素与之对应,则k的取值范围是____________.4.定义在R上的函数f(x)满足f(x)=则f(2013)的值为___三、典型例题:例1(1)函数f(x)=+lg(3x+1)的定义域为_______.(2)函数y=的定义域为_______.(3)若函数f(x)=的定义域为R,则实数m的取值范围是.(4)若函数f(2x)的定义域是[-1,1],则f(log2x)的
13、定义域是__________.-12-南通市天星湖中学2013.1例2 求下列函数的值域.(1)y=x2+2x(x∈[0,3]);(2)y=;变式:y=(3)y=x-;例3 (1)已知f=x2+,求f(x)的解析式;(2)已知f=lgx,求f(x)的解析式;(3)已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,求f(x)的解析式;(4)已知f(x)满足2f(x)+f=3x,求f(x)的解析式.(5)已知f(
此文档下载收益归作者所有