6-1不等关系与不等式

6-1不等关系与不等式

ID:47017443

大小:60.00 KB

页数:3页

时间:2019-06-01

6-1不等关系与不等式_第1页
6-1不等关系与不等式_第2页
6-1不等关系与不等式_第3页
资源描述:

《6-1不等关系与不等式》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第六单元不等式6.1不等关系与不等式一、选择题1.若a>b>0,则下列不等式中一定成立的是(  )                                 A.a+>b+B.>C.a->b-D.>解析:∵a>b>0,∴>,∴a+>b+.答案:A2.下列命题正确的是(  )A.若ac>bc⇒a>bB.若a2>b2⇒a>bC.若>⇒a<bD.若<⇒a<b解析:对于A,若c<0,其不成立;对于B,若a、b均小于0或a<0,其不成立;对于C,若a>0,b<0,其不成立;对于D,其中a≥0,b>0,平方后显然有a<b.答案:D3.设a=sin15°+cos

2、15°,b=sin16°+cos16°,则下列各式正确的是(  )A.a<<bB.a<b<C.b<a<D.b<<a解析:a=sin15°+cos15°=sin60°,b=sin16°+cos16°=sin61°,∴a<b,排除C、D两项.又a≠b,∵>ab=sin60°·sin61°=sin61°>sin61°=b,故a<b<成立.答案:B4.已知x>y>z,且x+y+z=0,下列不等式中成立的是(  )A.xy>yzB.xz>yzC.xy>xzD.x

3、y

4、>z

5、y

6、解析:由已知3x>x+y+z=0,3z<x+y+z=0,∴x>0,z<0.由得xy>xz

7、.答案:C二、填空题5.下列四个不等式:①a<0<b;②b<a<0;③b<0<a;④0<b<a.其中能使<成立的充分条件有______.解析:<⇔<0⇔b-a与ab异号,①②④能使b-a与ab异号.答案:①②④6.设a>1且m=loga(a2+1),n=loga(a-1),p=loga(2a),则m、n、p的大小关系为________.解析:∵a2+1>2a(a>1),∴loga(a2+1)>loga(2a).又∵a-1-2a=-a-1<0,∴a-1<2a,∴loga(a-1)<loga2a.∴m>p>n.答案:m>p>n7.a、b、c、d均为实数,使不

8、等式>>0和ad0,∴+>a+b.9.设m∈R,a>b>1,f(x)=,比较f(a

9、)与f(b)的大小.解答:f(a)-f(b)=-=.∵a>b>1,∴b-a<0,a-1>0,b-1>0,∴<0.当m>0时,<0,f(a)<f(b);当m<0时,>0,f(a)>f(b);当m=0时,=0,f(a)=f(b).10.设a>0,且a≠1,P=loga(a3-1),Q=loga(a2-1),试比较P与Q的大小.解答:∵P=loga(a3-1),Q=loga(a2-1),∴a>0,a3-1>0,a2-1>0,∴a>1.又∵(a3-1)-(a2-1)=a2(a-1)>0,∴a3-1>a2-1,∴loga(a3-1)>loga(a2-1).即P>Q

10、.1.(2009·全国Ⅱ)设a=lge,b=(lge)2,c=lg,则(  )A.a>b>cB.a>c>bC.c>a>bD.c>b>a解析:0<lge<1,即0<a<1;b=(lge)2=a2<a;c=lg=lge=a<a,又b=(lge)2<lg·lge=lge=c,因此b<c<a.答案:B2.设x1、x2是区间D上的任意两点,若函数y=f(x)满足f()≤成立,则称函数y=f(x)在区间D上下凸.(1)证明:函数f(x)=x+在区间(0,+∞)上下凸;(2)若函数y=f(x)在区间D上下凸,则对任意的x1,x2,…,xn∈D有f()≤.试根据下凸函数

11、的这一性质,证明:若x1,x2,…,xn∈(0,+∞),则(x1+x2+…+xn)(++…+)≥n2.证明:(1)设x1>0,x2>0,则f()-[f(x1)+f(x2)]=+-(x1++x2+)=-(+)==≤0,∴f()≤[f(x1)+f(x2)].由定义可知f(x)=x+在区间(0,+∞)上下凸.(2)由(1)可知f(x)=x+在(0,+∞)上下凸,根据性质,有+≤,∴≤(++…+),*∵x1,x2,…,xn∈(0,+∞),∴x1+x2+…+xn>0,故*式可化为(x1+x2+…+xn)(++…+)≥n2.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。