对“几何直观”概念的几点辨析

对“几何直观”概念的几点辨析

ID:47017112

大小:32.50 KB

页数:4页

时间:2019-05-28

对“几何直观”概念的几点辨析_第1页
对“几何直观”概念的几点辨析_第2页
对“几何直观”概念的几点辨析_第3页
对“几何直观”概念的几点辨析_第4页
资源描述:

《对“几何直观”概念的几点辨析》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、对“几何直观”概念的几点辨析一、几何直观的含义《标准》指出:“几何直观主要是指利用图形描述和分析问题.借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果.几何直观可以帮助学生直观地理解数学,在整个数学学习过程中都发挥着重要作用.”著名数学家徐利治先生也有过对几何直观的描述:“几何直观是借助于见到的或想到的几何图形的形象关系,产生对数量关系的直接感知.”[1]也有学者这么描述:“几何直观是一种思维活动,是人脑对客观事物及其关系的一种直接的识别或猜想的心理状态.”[2]从这些描述中,我们可以有以下的认识:◆几

2、何直观是一种运用图形认识事物的能力[3],或者说是一种解决数学问题的思维方式.◆这种能力可外化为一种在解决某些数学问题时的方法,这种方法区别于其他方法的典型特征在于它是以几何图形为工具的——即“几何”两字的意义.◆用这种方法解决问题,不是运用几何中常用的论证方法,而是通过经验、观察、想象等途径,直观地感知问题的结果或方向——即“直观”两字的意义.例如,三年级学生要学习同分子分数大小比较,这个知识相对比较抽象,学生较难理解.此时,学生如果能主动地采取画出(或想到)以下几何图形(图1)的方式,然后通过观察(或想象)图形的特点及联系,那么就能

3、直观地解决问题,并理解“分子相同的分数,分母小的反而大”的道理.学生如果具备这种解决问题的思维方式,掌握这样的方法,我们就可以说学生有几何直观的能力.二、几何直观与数形结合在理解几何直观意义的过程中,教师们最大的困惑就是难以将几何直观与数形结合清晰地区别开来.比如说,上文所举的分数大小比较时用几何图形来思考的例子,在以前,我们一直将其视为用数形结合思想来解决问题的典型.而如今,这样的观念要调整,数形结合变成了几何直观,这就难免让人产生疑惑:数形结合与几何直观,区别到底在哪里?近期,笔者参与的或了解到的一些以几何直观为话题的教研活动,都呈

4、现出了一个共同之处:教师呈现的所谓几何直观的例子,都是以前所讲的数形结合的例子.教师们更有这样的认识:几何直观,无非是数形结合的“同名词”,或者可能只是数形结合的“升级版”而已教师们对此的不解,也表现为“用到了几何图形,就是体现了几何直观”这样的想法.当然,笔者所言的这些教研活动,大多是很基层的,或许只是代表了部分一线普通教师的认识.但是,这足以说明对数形结合与几何直观作出区分是非常必要的.什么是数形结合?数形结合,是一种重要的数学思想方法,也是解决数学问题的有效策略.它是指解决数学问题时,可借助于“形”的直观来理解抽象的“数”,或反过

5、来运用“数”与“式”的描述来刻画“形”的特征.[4]数形结合最基本的形式为“以形助数”和“以数解形”.如小学数学中的分数应用题,我们运用画线段图来分析其中的数量关系,这样的情况就可叫做“以形助数”.而我们在直角坐标系中,用数对来描述图形的变化(如平移、旋转),或计算两点之间的距离等,这样的情况则可叫做“以数解形”.“以形助数”,是在发挥“形”所具有的直观特点,来降低“数”的抽象度;而“以数解形”,则是在利用“数”的精确性,来准确刻画“形”,让“形”得以量化.如此,直观与抽象相互配合,取长补短,从而顺利、有效地解决问题.[5]如果用一个不

6、太恰当的比喻来形容数形结合的特点,它就好比是架设在“数”与“形”之间的一条双向通道,起着由此及彼、相互促进的作用.我们再来看几何直观.从几何直观的概念可知,它是指“利用图形描述和分析数学问题”.那么,我们不得不产生这样的理解:几何直观就是用“形”来解决数学问题.尽管这个“数学问题”可能并不仅仅是“数”,可以是“形”或者其他数学问题.但不管怎样,如果与数形结合做个对比,那么它就只能算是一条由“形”出发的单向通道而已.在小学数学中,因为“以数解形”的例子极少,所以就造成了教师们谈及数形结合时,都是举了单向的由“形”出发解决“数”的例子.如此

7、一来,我们自然就会遇到这样的情况:数形结合的例子是“以形助数”,几何直观的例子也是“以形助数”,在小学中,两者所举的例子似乎是一样的.或许就是因为这样的原因,曾有专家提出:在小学数学中,不必区分数形结合和几何直观.这样的观点,笔者觉得也不无道理.当然,尽管有这样的观点,但并不是说几何直观就是数形结合的下位概念.笔者觉得,如果我们要将几何直观与“以形助数”作区别的话,那么就必须要抛开表面的相似,而去找到两者关键的区别.在笔者看来,几何直观的内涵最重要之处是“直接感知”(即徐利治先生所下定义中的用词).具体地说,数形结合的“以形助数”,的确

8、是借助于“形”来分析“数”,但是,这个“形”需要我们相对规范地得出,解释的过程更是要借助于“形”的细节严谨地开展,是带有初步的演绎推理的成分(已类似于证明).而几何直观,也是在用“形”,但这个“形”,可以是

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。