欢迎来到天天文库
浏览记录
ID:46797963
大小:835.00 KB
页数:14页
时间:2019-11-27
《椭圆的标准方程4》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2.2.1椭圆及其标准方程(二)教学重点:1、掌握椭圆的几何性质2、会求一些简单椭圆的标准方程3、掌握直接法、定义法、代入法求轨迹教学难点:掌握直接法、定义法、代入法求轨迹焦点在y轴上,中心在原点:焦点在x轴上,中心在原点:椭圆的标准方程:(这两种坐标系下的方程形式,是最简的)12yoFFMx(1)(2)b2=a2—c2cab12yoFFx1oFyx2FM其中F1(-c,0),F2(c,0)其中F1(0,-c),F2(0,c)M知识概括椭圆的定义图形标准方程焦点坐标a,b,c的关系焦点位置的判断F1(-c,0),F2(c,0)F1
2、(0,-c),F2(0,c)看分母的大小,焦点在分母大的那一项对应的坐标轴上.12yoFFMx1oFyx2FM例1cabM例1、求满足下列条件的椭圆的标准方程(1)经过点P(-2,0)和Q(0,-3);(4)a=4,b=1,焦点在坐标轴上练习.已知椭圆的方程为,焦点在X轴上,则其焦距为()A2B2C2D2A2答案动画演示例3、如图,在圆 上任取一点P作x轴的垂线段PD,D为垂足。当点P在圆上运动时,线段PD的中点M的轨迹是什么?为什么?解:设点M坐标为M(x,y),点P的坐标为P(x’,y’),则由题意可得:因为所以即这就
3、是点M的轨迹方程,它表示一个椭圆。相关点分析法:即利用中间变量求曲线方程.oxyPMD例5:已知是椭圆的两个焦点,P是椭圆上任一点。(1)若求的面积。(2)求的最大值。课下作业:已知圆A:(x+3)+y=100,圆A内一定点B(3,0),圆P过B点且与圆A内切,求圆心P的轨迹方程.解:设|PB|=r.∵圆P与圆A内切,圆A的半径为10.∴两圆的圆心距|PA|=10-r,即|PA|+|PB|=10(大于|AB|).∴点P的轨迹是以A、B两点为焦点的椭圆.∴2a=10,2c=|AB|=6,∴a=5,c=3.∴b2=a2-c2=25-9
4、=16.即点P的轨迹方程为=1.
此文档下载收益归作者所有