欢迎来到天天文库
浏览记录
ID:46675444
大小:1.34 MB
页数:46页
时间:2019-11-26
《高考总复习一轮《名师一号-数学》第19讲》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第十九讲 两角和与差的三角函数回归课本1.在两角和与差的公式中,以C(α+β)为最基本公式,其推导过程应熟练掌握.如下图,点P1,P2,P3,P4的坐标分别为P1(1,0),P2(cosα,sinα),P3(cos(α+β),sin(α+β)),P4(cos(-β),sin(-β)),由P1P3=P2P4及两点间距离公式得[cos(α+β)-1]2+sin2(α+β)=[cos(-β)-cosα]2+[sin(-β)-sinα]2,整理得cos(α+β)=cosαcosβ-sinαsinβ(C(α+β)),本公式中α,β对任意角都成立.答案:D答案:
2、C答案:A答案:D点评:本题主要考查三角函数的基本运算,同角三角函数关系公式以及倍角公式.解题关键是熟练掌握公式,并注意不能出现丢解错误.答案:D类型一 三角函数式的求值问题解题准备:利用同角三角函数基本关系式及诱导公式,结合两角和与差的三角函数公式、二倍角公式等,将所给三角函数式进行化简,并利用特殊角的三角函数值求值.[分析]注意角之间的关系,切化弦,从题设代数式联系与三角函数公式结构的差异,寻找解题思路,同时将非特殊角转化为特殊角或通过约分消掉.类型二 三角函数的给值求值问题解题准备:已知角是什么,所求角是什么,已知角与所求角有怎样的关系,然
3、后选择和差角公式求解.类型三 三角函数的给值求角问题解题准备:给值求角问题的一般解题步骤包括三个方面:1.求出角的某一个三角函数值.2.确定角的范围.3.根据角的范围写出所求的角.[分析]欲求A+B的值,先求A+B的一个三角函数值,然后再由A、B的范围求得A+B的值.[点评]通过先求角的某个三角函数值来求角,在选取函数时,遵照以下原则:类型四 三角函数式的证明问题解题准备:三角恒等式的证明过程实际上就是三角函数式的化简过程,要注意变换的等价性.[分析]2α+β=(α+β)+α,β=(α+β)-α.[点评]对于条件恒等式的证明,要注意观察,比较条件
4、和结论之间的联系,一般是先看角,再看函数的名称、次数等.类型五 三角函数式的化简问题解题准备:1.化简的思路对于和式,基本思路是降次、消项和逆用公式;对于三角分式,基本思路是分子与分母约分或逆用公式;对于二次根式,注意倍角公式的逆用.另外,还可以用切割化弦、变量代换、角度归一等方法.2.化简的方法弦切互化,异名化同名,异角化同角,降幂或升幂,和差化积、积化和差等.[分析]先化简所求式子,再观察该式与已知条件的联系,从而找到解题思路.[点评]已知三角函数式的值,求其他三角函数式的值,一般思路为:①先化简所求式子;②观察已知条件与所求式子之间的联系(从
5、三角函数名及角入手);③将已知条件代入所求式子,化简求值.类型六 三角变换的综合应用解题准备:三角恒等变换与向量的综合问题在最近几年各省市的高考卷中屡有出现,此类问题大多数属中等题,重点考查三角函数的相关知识,向量更多是作为一种载体或工具出现.一般是利用向量的加法、减法、数乘及数量积等运算,将以向量为背景的问题转化为三角函数问题,转而用三角函数的知识解决问题.[点评](1)已知三角函数值求角,一定要注意角的范围.(2)求解三角函数有关的问题,有时构造等式,用方程的思想解决更简单、实用.名师作业·练全能点击进入word
此文档下载收益归作者所有