欢迎来到天天文库
浏览记录
ID:46582271
大小:3.93 MB
页数:18页
时间:2019-11-25
《 广西南宁市第三中学2019届高三上学期第一次月考(开学考试)数学(理)试题(解析版)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、南宁三中2018~2019学年度上学期高三月考(一)理科数学试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.1.已知集合,则()A.B.C.D.【答案】D【解析】分析:先分别求出集合A和B,由此能求出.详解:A={x
2、x2﹣1<0}={x
3、﹣1<x<1},∴故选:D点睛:本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.2.2.已知,则复数()A.B.C.D.【答案】A【解析】【分析】由题意结合复数的运算法则和
4、复数的性质整理计算即可求得最终结果.【详解】由题意可得:,则.本题选择A选项.【点睛】本题主要考查复数的运算法则,复数的模的计算等知识,意在考查学生的转化能力和计算求解能力.3.3.已知,则()A.B.C.D.【答案】B【解析】【分析】由题意首先求得的值,然后利用二倍角公式整理计算即可求得最终结果.【详解】由题意结合诱导公式可得:,则.本题选择B选项.【点睛】本题主要考查诱导公式、二倍角公式的应用,意在考查学生的转化能力和计算求解能力.4.4.某个几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【答案
5、】C【解析】【分析】由题意首先确定几何体的空间结构特征,然后求解其体积即可.【详解】如图所示,在棱长为的正方体中,为棱的中点,则三视图所对的几何体为三棱锥,则,棱锥的高,据此可知该几何体的体积.本题选择C选项.【点睛】(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.5.5.已知圆和两点,,若圆上存在点,使得,则的最大值为()A.B.C.D.【
6、答案】D【解析】【分析】将原问题转化为圆与圆的位置关系,据此求解实数a的取值范围即可,据此确定a的最大值即可.【详解】若点P满足,则点P在以AB为直径的圆上,据此可知,满足题意时,圆与圆有公共点,两圆的圆心距:,两圆的半径,,满足题意时应有:,即:,求解关于实数a的不等式可得:,则的最大值为.本题选择D选项.【点睛】本题主要考查圆与圆的位置关系,等价转化的数学思想等知识,意在考查学生的转化能力和计算求解能力.6.6.已知的展开式中,二项式系数和为,各项系数和为,则()A.B.C.D.【答案】A【解析】【分析】由题意
7、首先求得n的值,然后求解m的值即可.【详解】展开式二项式系数和为,则:,故.则各项系数和为,据此可得:.本题选择A选项.【点睛】本题主要考查二项式系数与各项系数和的含义与应用等知识,意在考查学生的转化能力和计算求解能力.7.7.函数的图象可能是()A.B.C.D.【答案】A【解析】【分析】由题意结合函数的解析式排除错误选项即可确定函数的图象.【详解】函数的定义域关于坐标原点对称,且由函数的解析式可知:,则函数为奇函数,其图象关于坐标原点对称,选项CD错误;当时,,则,当时,单调递减,当时,单调递增,即函数在区间内先
8、单调递减,再单调递增,据此可排除B选项,本题选择A选项.【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.8.8.已知随机变量服从正态分布,且,则()A.B.C.D.【答案】C【解析】【分析】由题意结合正态分布的对称性得到关于a的方程,解方程即可求得实数a的值.【详解】随机变量服从正态分布,则正态分布
9、的图象关于直线对称,结合有,解得:.本题选择C选项.【点睛】关于正态曲线在某个区间内取值的概率求法:①熟记P(μ-σ10、,则的对称轴可能为()A.B.C.D.【答案】B【解析】【分析】由题意首先确定的值,然后求解函数的对称轴即可.【详解】由题意可知,当时,,据此可得:,令可得,则函数的解析式为,函数的对称轴满足:,解得:,令可知函数的一条对称轴为,且很明显选项ACD不是函数的对称轴.本题选择B选项.【点睛】本题主要考查三角函数解析式的求解,三角函数对称轴方程的求解等知识,意在
10、,则的对称轴可能为()A.B.C.D.【答案】B【解析】【分析】由题意首先确定的值,然后求解函数的对称轴即可.【详解】由题意可知,当时,,据此可得:,令可得,则函数的解析式为,函数的对称轴满足:,解得:,令可知函数的一条对称轴为,且很明显选项ACD不是函数的对称轴.本题选择B选项.【点睛】本题主要考查三角函数解析式的求解,三角函数对称轴方程的求解等知识,意在
此文档下载收益归作者所有