谈谈整体思想在初中数学解题中的运用

谈谈整体思想在初中数学解题中的运用

ID:46003770

大小:73.50 KB

页数:6页

时间:2019-11-20

谈谈整体思想在初中数学解题中的运用_第1页
谈谈整体思想在初中数学解题中的运用_第2页
谈谈整体思想在初中数学解题中的运用_第3页
谈谈整体思想在初中数学解题中的运用_第4页
谈谈整体思想在初中数学解题中的运用_第5页
资源描述:

《谈谈整体思想在初中数学解题中的运用》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、谈谈整体思想在初中数学解题中的运用【摘要】本文对整体思想在初屮数学解题屮的运用作初步的分析探讨,论述了整体思想在数学学习中的重要性。【关键词】整体思想;运用整体思想是一种重要的思想方法,什么是整体思想?整体思想就是将问题看成一个完整的整体,注重问题的整体结构和结构改造的思维过程。它的特点是从宏观上全面观察事物的整体结构,从整体上去揭示事物的本质。在数学解题中灵活应用整体思想能够达到快捷、简洁、过程容易的功效。我们在学好基本概念和基本知识的前提下应多注重学习体会这种数学思想在实际解题中的运用,从而体会这种思想,努力提高分析问题和解决问题的能力。初屮数学运用整体

2、思想解题的具体表现形式冇全局整体法、整体代换法、整体改造法、丿』部整体法、整体补形法等。现就结合自L1多年的教学实践,在广泛吸取同行经验的基础上,谈谈整体思想在如下几方面的实际运用。一、整体思想在代数式求值中的运用七年级上册《数学》的第三章屮用字母表示数就是一个整体思想运用的体现,代数式中的字母不仅可以表示一个数,还可以表示成一个式子或一系列的数值。例1:已知x+y二3,x3+y3+x2y+xy2二9,求x2+y2的值。分析与解答:欲求x2+y2的值,最容易想到的是先求x与y的值。因而要先解方程。这样便产生两个问题,其一,我们现在还没学过解方程;其二,即使将

3、用X来表示出y的代数式代入解那计算也是复杂的事,不过,能从整体上改变,将x3+y3+x2y+xy2二9变形为(x2-xy+y2)(x+y)+xy(x+y)二9,即x2-xy+y2+xy二3,故x2+y2二3。解:Ix3+y3+x2y+xy2二(x2-xy+y2)(x+y)+xy(x+y)二(x+y)(x2-xy+y2+xy)二(x+y)(x2+y2)二9,x+y二3/.x2+y2二3像这类问题从表面上看需要局部求出各有关量,但实质上若从“整体”上把握已知量之间的关系,则思路更为明朗、解法更为巧妙。二、整体思想在解方程中的运用我们在解方程的过程中常会发现一些计

4、算较复杂的方程,但若能运用整体思想加以详细考察的话往往会是“柳暗花明又一村”。例2:已知(a2+b2)2-(a2+b2)-6=0,求a2+b2的值。分析:若把(a2+b2)看作一个整体,则原方程是以(a2+b2)为未知数的一元二次方程,可用因式分解法去解。解:[(a2+b2)-3][(a2+b2)+2]二0Aa2+b2-3=0或a2+b2+2二0a2+b2=3或a2+b2二一2Va2+b2>0・・・a2+b2二一2(不合题意,舍去):.a2+b2=3从上面的例子可以看出,在分析解题过程中,通过研究问题的整体形式,作整体处理后,便顺利简洁地处理了问题。三、整体

5、思想在因式分解中的运用一些因式分解题,分了又分,解了又解,走了山路十八弯仍分解不出来,或者是算了满满的几页草稿方得出答案。此类问题不妨运用整体思想来加以考虑问题、解决问题,你会真正体会到这种思想在解题中的奇迹性,真有“水到渠成”的感觉。例3:分解因式(a+2b+c)3-(a+b)3-(b+c)3分析:如果展开后消掉一部分项再分解,运算量较大。通过观察不难发现a+2b+c二(a+b)+(b+c),那么就可以通过局部整体处理换元简化我们的运算过程。解:设A二a+b,B二b+c则A+B二a+2b+c从而原式二(A+B)3-A3-B3二A3+3A2B+3AB2+B3

6、-A3-B3二3A2B+3AB2=3AB(A+B)=3(a+b)(b+c)(a+2b+c)例4:因式分解(x~a)(x~2a)(x~3a)(x-4a)-120a4分析:观察(x~a)(x~2a)(x~3a)(x-4a)中(x-a)(x~4a)=x2~5ax+4a2,(x-2a)(x~3a)=x2~5ax+6a2,这两个乘积中都含有x2~5ax二次项,一次项的系数分别相同,此时即可通过局部整体换元,令u二x2-5ax代入原式,将原式转化为u=x2-5ax代入原式,将原式转化为u的二次三次式后再用分组分解法分解因式。木题通过整体考虑代换后达到思路清晰、明了,便于

7、提高分析问题与解决问题的能力。四、整体思想在几何解题中的运用在初屮几何教学屮,加强整体思维训练,有利于培养学生思维的全面性、创造性;有利于开发智力和增进学习兴趣,运用整体思想解某些儿何题的独到Z处是把己知图形看作某个图形的一部分,然后补形构造出整体图形,从分析整体与局部的有机联系中,使问题迅速获解。例5:如图,CD,BE分别是ZkABC的ZACB,ZABC的外角的平方线,且CD丄AD、AE丄BE,若BC二a、CA二b,AB二c,求DE的长。分析:从已知图形中直接求出DE的长较难,若用整体的观点看待此题,可以先作tBRtABEA,RtACDA分别关于BE、CD

8、对称的图形,即作出整个三角形AFG,问题便迎刃而解。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。