欢迎来到天天文库
浏览记录
ID:45761457
大小:1.30 MB
页数:21页
时间:2019-11-17
《二值图象分析(精品)》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、第三章二值图像分析一幅数字图像是一个二维阵列,阵列元素值称为灰度值或强度值.实际上,图像在量化成数字图像前是一个连续强度函数的集合,场景信息就包含在这些强度值屮•图像强度通常被量化成256个不同灰度级,对某些应用来说,也常有32、64、128或512个灰度级的悄况,在医疗领域里甚至使用高达4096(12bits)个灰度级.很明显,灰度级越高,图像质量越好,但所需的内存也越大.在机器视觉研究的早期,由于内存和计算能力非常有限,而且十分昂贵,因此视觉研究人员把精力主要集中在研究输入图像仅包含两个灰度值的二值视觉系统上.人们注意到,人类视觉在理
2、解仅由两个灰度级组成的线条、轮廓影像或其它图像时没有任何怵I难,而且应用场介很多,这一点对研究二值视觉系统的研究人员是一个极大的鼓舞.随着计算机计算能力的不断增强和计算成本的不断下降,人们普遍开始研究基于灰度图像、彩色图像和深度图像的视觉系统.尽管如此,二值视觉系统还是十分有用的,其原因如F:(1)计算二值图像特性的算法非常简单,容易理解和实现,并且计算速度很快.⑵二值视觉所需的内存小,対计算设备要求低.工作在256个灰度级的视觉系统所需内存是工作在相同大小二值图像视觉系统所需内存的八倍.如若利用游程长度编码等技术(见3.4节)还可使所需
3、内存进一步减少.由于二值图像中的许多运算是逻辑运算而不是算术运算,所以所需的处理时间很短.(3)许多二值视觉系统技术也可以用丁•灰度图像视觉系统上.在灰度或彩色图像屮,表示一个口标或物体的一种简易方法就是使用物体模板(mask),物体模板就是一幅二值图像,其中1表示目标上的点,0表示其它点.在物体从背景屮分离出來后,为了进行决策,还需要求収物体的儿何和拓扑特性,这些特性可以从它的二值图像计算出来.因此,尽管我们杲在二值图像上讨论这些方法,但它们的应用并不限于二値图像.-•般来说,当物体轮廓足以用来识别物体且周围环境可以适当地控制时,二值视
4、觉系统是非常有用的.当使用特殊的照明技术和背景并且场景中只有少数物体时,物体町以很容易地从背景中分离出來,并可得到较好的轮廓,比如,许多工业场合都属于这种情况.二值视觉系统的输入一般是灰度图像,通常使用阈值法首先将图像变成二值图像,以便把物体从背景中分离出来,其中的阈值取决于照明条件和物体的反射特性.二值图像可用来计算特定任务屮物体的儿何和拓扑特性,在许多应用中,这种特性对识别物体来说是足够的.二值视觉系统已经在光学字符识别、染色体分析和工业零件的识别中得到了广泛应用.在下面的讨论中,假定二值图像大小为mx/z,其中物体像素值为1,背景像
5、素值为0.视觉系统屮的一个重要问题是从图像中识别代表物体的区域(或子图像),这种对人来说是件非常容易的事,对计算机来说却是令人吃惊的困难.为了将物体区域同图像其它区域分离出来,需要首先対图像进行分割.把图像划分成区域的过程称为分割,即把图像j]划分成区域门,“2,…,几,使得每一个区域对应一个候选的物体•下而给出分割的严格定义•定义分割是把像素聚合成区域的过程,使得:•U-=i片=整幅图像({片}是一个完备分割).•片0巧=0,心八({*•}是一个完备分割).•每个区域pt满足一个谓词,即区域内的所有点有某种共同的性质.•不同区域的图像,
6、不满足这一谓词.正如上而所表明的,分割满足一个谓词,这一谓词可能是简单的,如分割灰度图像时用的均匀灰度分布、相同纹理等谓词,但在大多数应用场合,谓词十分复杂.在图像理解过程中,分割是一个非常重要的步骤.二值图像可以通过适当地分割灰度图像得到.如果物体的灰度值落在某一区间内,并且背景的灰度值在这一区间之外,则可以通过阈值运算得到物体的二值图像,即把区间内的点置成1,区间外的点置成o.对于•二值视觉,分割和阈值化是同义的.阈值化可以通过软件來实现,也可以通过硬件直接完成.通过阈值运算是否可以有效地进行图像分割,取决丁•物体和背景Z间是否有足够
7、的对比度.设一幅灰度图像F[i,j]中物体的灰度分布在区间[刁,兀]内,经过阈值运算后的图像为二值图像昂卩,刀,即:FT[iJ]=<1如果0其它7;8、某些场合下,前儿轮运算通常釆用交互式方式来分析图像,以便确定合适的阈值.但是,在机器视觉系统中,由于视觉系统的口主性能(autonomy)要求,必须进行自动阈值选择•现在已经研究出许多利川图像
8、某些场合下,前儿轮运算通常釆用交互式方式来分析图像,以便确定合适的阈值.但是,在机器视觉系统中,由于视觉系统的口主性能(autonomy)要求,必须进行自动阈值选择•现在已经研究出许多利川图像
此文档下载收益归作者所有