2018年秋高中数学第二章基本初等函数Ⅰ2.1指数函数2.1.2指数函数及其性质第1课时指数函数的图象及性质学案新人教A版必修1

2018年秋高中数学第二章基本初等函数Ⅰ2.1指数函数2.1.2指数函数及其性质第1课时指数函数的图象及性质学案新人教A版必修1

ID:45736218

大小:141.00 KB

页数:6页

时间:2019-11-17

2018年秋高中数学第二章基本初等函数Ⅰ2.1指数函数2.1.2指数函数及其性质第1课时指数函数的图象及性质学案新人教A版必修1 _第1页
2018年秋高中数学第二章基本初等函数Ⅰ2.1指数函数2.1.2指数函数及其性质第1课时指数函数的图象及性质学案新人教A版必修1 _第2页
2018年秋高中数学第二章基本初等函数Ⅰ2.1指数函数2.1.2指数函数及其性质第1课时指数函数的图象及性质学案新人教A版必修1 _第3页
2018年秋高中数学第二章基本初等函数Ⅰ2.1指数函数2.1.2指数函数及其性质第1课时指数函数的图象及性质学案新人教A版必修1 _第4页
2018年秋高中数学第二章基本初等函数Ⅰ2.1指数函数2.1.2指数函数及其性质第1课时指数函数的图象及性质学案新人教A版必修1 _第5页
资源描述:

《2018年秋高中数学第二章基本初等函数Ⅰ2.1指数函数2.1.2指数函数及其性质第1课时指数函数的图象及性质学案新人教A版必修1 》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第1课时 指数函数的图象及性质学习目标:1.理解指数函数的概念与意义,掌握指数函数的定义域、值域的求法.(重点、难点)2.能画出具体指数函数的图象,并能根据指数函数的图象说明指数函数的性质.(重点)[自主预习·探新知]1.指数函数的概念一般地,函数y=ax(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R.思考:指数函数定义中为什么规定a大于0且不等于1?[提示] 规定a大于0且不等于1的理由:(1)如果a=0,当x>0时,ax恒等于0;当x≤0时,ax无意义.(2)如果a<0,如y=(-2)x,对于x=,,…时在实数范围

2、内函数值不存在.(3)如果a=1,y=1x是一个常量,对它无研究价值.为了避免上述各种情况,所以规定a>0且a≠1.2.指数函数的图象和性质a>10<a<1图象性质定义域R值域(0,+∞)过定点(0,1),即当x=0时,y=1单调性在R上是增函数在R上是减函数奇偶性非奇非偶函数对称性函数y=ax与y=a-x的图象关于y轴对称[基础自测]1.思考辨析(1)y=x2是指数函数.(  )(2)函数y=2-x不是指数函数.(  )(3)指数函数的图象一定在x轴的上方.(  )[答案] (1)× (2)× (3)√2.函数y=3-x的图象是(  )

3、A     B    C      DB [∵y=3-x=x,∴B选项正确.]3.若指数函数f(x)的图象过点(3,8),则f(x)的解析式为(  )【导学号:37102229】A.f(x)=x3     B.f(x)=2xC.f(x)=xD.f(x)=xB [设f(x)=ax(a>0且a≠1),则由f(3)=8得a3=8,∴a=2,∴f(x)=2x,故选B.]4.函数y=ax(a>0且a≠1)在R上是增函数,则a的取值范围是________.(1,+∞) [结合指数函数的性质可知,若y=ax(a>0且a≠1)在R上是增函数,则a>1.]

4、[合作探究·攻重难]指数函数的概念 (1)下列函数中,是指数函数的个数是(  )①y=(-8)x;②y=2x2-1;③y=ax;④y=(2a-1)x;⑤y=2·3x.A.1          B.2C.3D.0(2)已知函数f(x)为指数函数,且f=,则f(-2)=________.【导学号:37102230】(1)A (2) [(1)④为指数函数;①中底数-8<0,所以不是指数函数;②中指数不是自变量x,而是x的函数,所以不是指数函数;③中底数a,只有规定a>0且a≠1时,才是指数函数;⑤中3x前的系数是2,而不是1,所以不是指数函数,

5、故选A.(2)设f(x)=ax(a>0且a≠1),由f=得a=,所以a=3,又f(-2)=a-2,所以f(-2)=3-2=.][规律方法] 1.在指数函数定义的表达式中,要牢牢抓住三点:(1)底数是大于0且不等于1的常数;(2)指数函数的自变量必须位于指数的位置上;(3)ax的系数必须为1.2.求指数函数的解析式常用待定系数法.[跟踪训练]1.已知函数f(x)=(2a-1)x是指数函数,则实数a的取值范围是________.∪(1,+∞) [由题意可知解得a>,且a≠1,所以实数a的取值范围是∪(1,+∞).]指数函数的图象的应用 (1)

6、函数f(x)=ax-b的图象如图211所示,其中a,b为常数,则下列结论正确的是(  )图211A.a>1,b<0B.a>1,b>0C.00D.00,且a≠1)的图象过定点________.(1)D (2)(3,4) [(1)由于f(x)的图象单调递减,所以00,b<0,故选D.(2)令x-3=0得x=3,此时y=4.故函数y=ax-3+3(a>0,且a≠1)的图象过定点(3,4).][规律方法] 指数函数图象问题

7、的处理技巧(1)抓住图象上的特殊点,如指数函数的图象过定点.(2)利用图象变换,如函数图象的平移变换(左右平移、上下平移).(3)利用函数的奇偶性与单调性.奇偶性确定函数的对称情况,单调性决定函数图象的走势.[跟踪训练]2.已知f(x)=2x的图象,指出下列函数的图象是由y=f(x)的图象通过怎样的变化得到:(1)y=2x+1;(2)y=2x-1;(3)y=2x+1;(4)y=2-x;(5)y=2

8、x

9、.[解] (1)y=2x+1的图象是由y=2x的图象向左平移一个单位得到.(2)y=2x-1的图象是由y=2x的图象向右平移1个单位得到.

10、(3)y=2x+1的图象是由y=2x的图象向上平移1个单位得到.(4)∵y=2-x与y=2x的图象关于y轴对称,∴作y=2x的图象关于y轴的对称图形便可得到y=2-x的图象.(5)∵y=2

11、x

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。