统计预测与决策论文(终稿)

统计预测与决策论文(终稿)

ID:45616706

大小:67.73 KB

页数:15页

时间:2019-11-15

统计预测与决策论文(终稿)_第1页
统计预测与决策论文(终稿)_第2页
统计预测与决策论文(终稿)_第3页
统计预测与决策论文(终稿)_第4页
统计预测与决策论文(终稿)_第5页
资源描述:

《统计预测与决策论文(终稿)》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、各种预测模型在全国能源消耗总量中的应用091124104丁灯摘要:能源影响着我国社会经济的稳定持续发展,对未来能源消耗的准确预测具有重要的意义。木文以我国1978-2008年的全国能源消耗总量数据为基础,建立了ARIMA预测模型、灰色预测模型、三次多项式预测模型和基于这三种模型的组合模型,并进行了精度比较,最后选择最优的组合预测模型对2009-2011年的全国能源消耗总量进行预测。关键词:ARIMA模型;灰色预测模型;三次多项式;组合模型;能源消耗1引言:能源是国民经济发展和人民生活水平提高的重要物质基础,能源短缺曾经长期制约我国经济的发展。近儿年由于

2、能源工业的发展,短缺局面虽然得到了缓解,但从长远来看能源供需形势仍然非常严峻,因此做好未來能源消费预测分析,为能源规划及政策的制定提供科学的依据,对于保持我国社会经济健康、持续、稳定发展具有重要的理论与现实意义。本文利用《屮国统计年鉴》得到31期全国能源消耗总量y的时间序列如下表一所示:表一:全国能源消耗总量(单位:万吨标准煤)年份197819791980198119821983198419851986y571445858860275594476206766040709047668280850年份1987198819891990199119921993

3、19941995y86632929979693498703103783109170115993122737131176年份199619971998199920002001200220032004y138948137798132214133831138552.6143199.2151797.3174990.3203226.7年份2005200620072008y2246822462702655832850002预测方法介绍2.1ARIMA模型的基本原理ARIMA模型是Box和Jenkinsl970年提出的以随机理论为基础的时间序列分析方法,乂称为"Box

4、-Jenkins模型”,这以模型在经济领域的预测分析中得到了广泛的应用。时间序列是依赖时间t的一组随机变量,构成该时序的单个序列值虽然具有不确定性,但对整个时间序列来说,它的变化却有一定的规律性,可以用和应的数学模型来近似描述。ARIMA模型有三种基木类型:自冋归模型、移动平均模型、单整自凹归移动平均模型。单整是指将一个时间序列有非平稳性变为平稳性所要经过的差分的次数,这是对非平稳时间序列进行时间序列分析的必经步骤。假设一个随机过程含有d个单位根,其经过d次差分之后可以变换为一个平稳的口回归移动平均过程。则该随机过程称为单整自冋归移动平均模型。模型中A

5、R称为口冋归分量,P为口回归分量的阶数;MA为移动平均分量,q为移动平均分量的阶数;I为差分,d为使时间序列具有平稳性所需要的羌分次数。p阶自凹归过程AR(p)的一般表达式为:X,=(p}Xt_}+(p2X{_2+•••+^Xt_p+其屮“白噪声过程。q阶的移动平均过程MA(q)可以表示为:X[=--q9吕为白噪声过程。ARIMA(p,d,q)模型一般表达式为:Xf=0()+0IX_]+©X一2+•••+QpX—p+£—&]£_]_&2^-2OqS-q2.2灰色预测法灰色预测法是一种对含有不确定因素的系统进行预测的方法。一般是利用时间序列数据,通过建立

6、GM(1,1)模型进行预测。灰色预测模型的预测步骤如下:(1)首先对原始时间序列数据兀⑼,做一次累加生成,得到新的序列兀⑴(2)利用一次累加生成序列拟合微分方程:—+做⑴二“,得到参数。dt和“(3)解微分方程得到预测模型函数:X'⑴伙+1)=[X®(1)-上]厂火+上aa(4)将得到的X’⑴序列进行一次累减得到预测序列X®(5)利用历史数据对数据模型进行精度检验,若通不过检验,则利用残差对原模型进行修正。(6)通过预测方程进行预测。2.3组合预测模型不同的预测方法根据相同的信息,往往会提供不同的结果,如杲简单的将误差较大的一些方法舍弃掉,将会丢弃一些

7、有用的信息,使得模型的精度不高。组合预测法是指通过建立一个组合预测模型,把多种预测方法所得到的预测结果进行综合。由于组合模型能够较大限度地利用各种预测样木信息,所以它比单项预测模型考虑问题更系统、更全面,因而能够有效地减少单个预测模型受随机因素的影响,可以提高预测的精度和稳定性。3全国能源消耗总量的实证分析3.1建立ARIMA模型3.11平稳化处理用ARIMA模型拟合的时间序列必须是平稳的,如果序列不平稳,则要通过差分或序列变换等先将序列平稳化。绘制原始序列的时序图得到图形如图一所示:Y300,000250,000200,000150,000-100,

8、000-1980198519901995200020052010图一:y时序图由图可从直观上看

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。